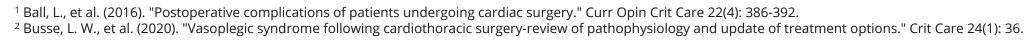
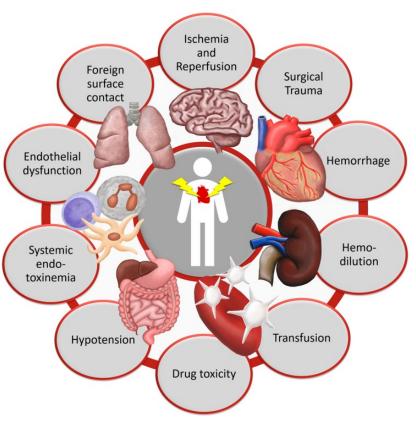
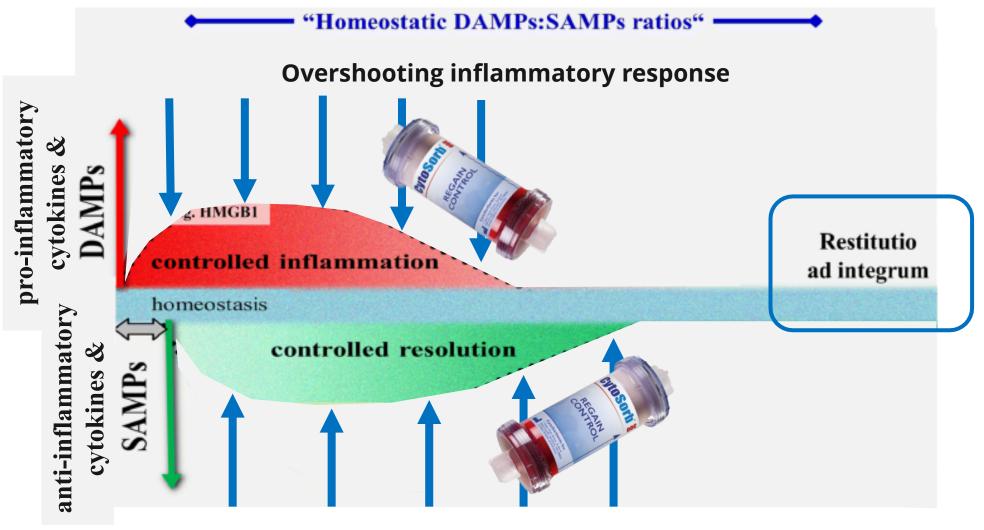
Postoperative hemoadsorption in high-risk cardiac surgery patients – in whom, when and how should we do it?


> Zaki Haidari, MD, MSc Department of Thoracic and Cardiovascular Surgery West German Heart and Vascular Center University Hospital Essen Essen, Germany



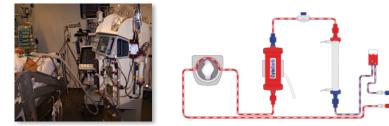

Background

- Sepsis prevalence in cardiac surgery ICU patients is estimated around 2.5%, with an exceptionally high mortality rate, above 65 – 80%¹
- Up to 50% of patients undergoing cardiac surgery may experience postoperative vasoplegic syndrome (former SIRS)²
- SIRS / septic shock in cardiac surgery is associated with high hospital mortality & morbidity
- Pathophysiology: dysregulated release of vasodilatory mediators and cytokines
- Elimination of excessive (toxic!) levels of cytokines with hemoadsorption may improve surgical outcomes by reducing inflammatory response

Legend: DAMPs- damage-associated molecular patterns, SAMPs - suppressing/inhibiting DAMPs

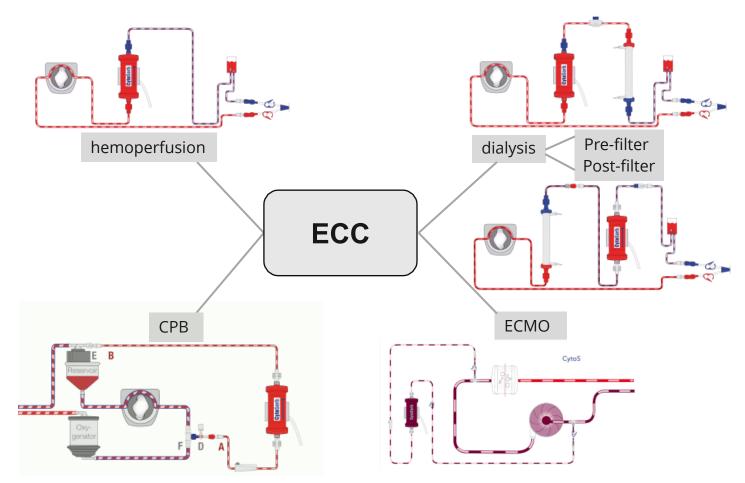
Adapted from: Land, W.G., 2020. Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution. Molecular Diagnosis & Therapy 24, 251–262.. doi:10.1007/s40291-020-00460-z

Intra- versus postoperative


Prevention (Therapy)

intraoperative

postoperative



If standard therapy based on guidelines fails to give sufficient hemodynamic stabilization within the first 6 to 24 hours, hemoadsorption should be considered as an adjunctive therapy.

SIRS / O₂, volume therapy, cathecholamines,...

Therapy modes

RESEARCH ARTICLE

Extracorporeal cytokine adsorption: Significant reduction of catecholamine requirement in patients with AKI and septic shock after cardiac surgery

Kristina Bosso¹*, Michael Jahn¹, Daniel Wendt², Zaki Haidari², Ender Demircioglu², Matthias Thielmann², Arjang Ruhparwar², Andreas Kribben¹, Bartosz Tyczynski¹

1 Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany, 2 Department of Thoracic and Cardiovascular Surgery, West German Heart & Vascular Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany

Artificial Organs

© 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc

Blood Purification With CytoSorb in Critically Ill Patients: Single-Center Preliminary Experience

*Maria Grazia Calabrò, *Daniela Febres, *Gaia Recca, *Rosalba Lembo, *Evgeny Fominskiy 😳, *Anna Mara Scandroglio, *†Alberto Zangrillo, and *†Federico Pappalardo

*Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute; and †Vita-Salute San Raffaele University of Milan, Milan, Italy

Short communication

Short communication

Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: a case series

Karl Träger¹, Daniel Fritzler¹, Guenther Fischer¹, Janpeter Schröder¹, Christian Skrabal², Andreas Liebold², Helmut Reinelt¹

¹ Department of Cardiac Anesthesiology, University Hospital Ulm, Ulm - Germany ² Clinic of Cardiothoracic and Vascular Surgery, University Hospital Ulm, Ulm - Germany

Comparison of intraoperative versus

intraoperative plus postoperative

hemoadsorption therapy in cardiac

surgery patients with endocarditis

life support therapy: A case series

Karl Träger¹⁰⁰, Christian Skrabal², Guenther Fischer¹, Janpeter Schroeder¹, Larissa Marenski¹, Andreas Liebold²,

Helmut Reinelt¹ and Thomas Datzmann¹

The International Journal of Artificial Organs © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-perr journals.sagepub.com/home/jac (\$)SAGE

Lars-Uwe Kühne, Robert Binczyk and Friedrich-Christian Rieß

DOI: 10.1177/039139881983130

The Internationa

ournal of Artificia

The International Iournal of Artificial Organs

The International Journal of Artificial Organs 1-8 © The Author(s) 2019 Article reuse guidelines

sagepub.com/journals-permission DOI: 10.1177/0391398819895287 journals sagepub com/home/ao SAGE

Artificial Organs

LETTERS TO THE EDITOR

Mechanical circulatory support with Impella 5.0 in septic shock

Zaki Haidari 🔀 Arjang Ruhparwar, Alexander Weymann

First published: 14 September 2020 | https://doi.org/10.1111/aor.13793

Open Access Case Report

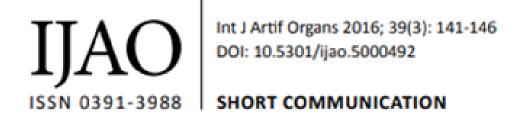
Urgent Coronary Artery Bypass Grafting Complicated by Systemic Inflammatory Response from Fulminant Herpes Zoster Successfully Managed with Adjunct Extracorporeal Hemoadsorption: A Case Report [†]

by 🙁 Zaki Haidari ¹ 🖂 🙁 Wilko Weißenberger ¹ 🗠 🙁 Bartosz Tyczynski ² 🗠 🙁 Ender Demircioglu ¹ 🗠 😫 Efthymios Deliargyris 3 🖾 💿, 😫 Martin Christ 4 🖾 🧟 Matthias Thielmann 1 🖾 💿, 😫 Mohamed El Gabry 1 🖾 😣 Arjang Ruhparwar 1 🖾 and 😣 Daniel Wendt 1.* 🖾

¹ Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, 45122 Essen, Germany

- ² Department of Nephrology, University Hospital Essen, 45147 Essen, Germany
- ³ Cytosorbents Inc., 305 College Road East, Princeton, NJ 08540, USA
- ⁴ Department of Cardiology and Intensive Care Medicine, Knappschaftskrankenhaus Bottrop, 46242 Bottrop, Germany Author to whom correspondence should be addressed.
- [†] Presented at the ESC Acute CardioVascular Care 2022, Marseille, France, 18–20 March 2022

Academic Editor: Ferdinando Mannello


J. Clin. Med. 2022, 11(11), 3106; https://doi.org/10.3390/icm11113106

Received: 22 March 2022 / Revised: 22 May 2022 / Accepted: 28 May 2022 / Published: 31 May 2022

Hemoadsorption treatment with CytoSorb® in patients with extracorporeal

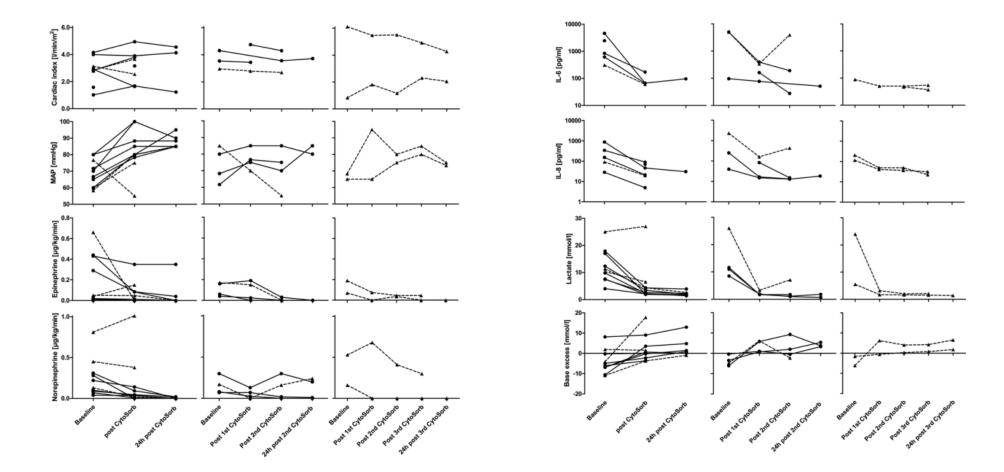
© Universitätsmedizin Essen

Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: a case series

Karl Träger¹, Daniel Fritzler¹, Guenther Fischer¹, Janpeter Schröder¹, Christian Skrabal², Andreas Liebold², Helmut Reinelt¹

¹Department of Cardiac Anesthesiology, University Hospital Ulm, Ulm - Germany

²Clinic of Cardiothoracic and Vascular Surgery, University Hospital Ulm, Ulm - Germany


Patient characteristics

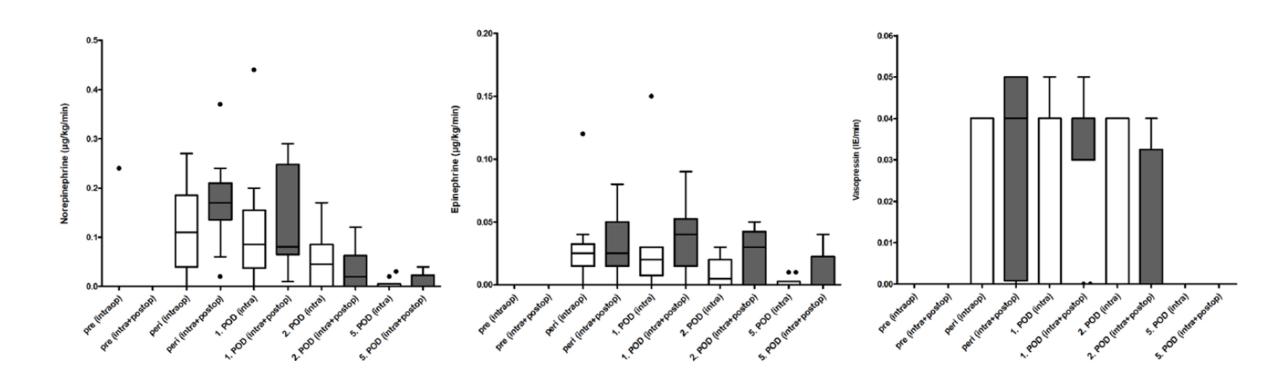
Case No	Age (years)	Gender	BMI	CPB time (min)	X clamp time (min)	Type of surgery	Emergency	CytoSorb treatments (n)	CytoSorb treatment time (h)		APACHE II baseline	Outcome ICU	28 day survival
1	68	М	34.1	107	56	MV replacement	Yes	1	29	Yes	29	Surv	Yes
2	78	M	25.9	120	80	MV repair	No	1	29	Yes	25	Surv	Yes
3	69	M	29.8	235	157	Ascending aorta repair. AV replacement	No	1	32	Yes	18	Surv	Yes
4	63	M	34.4	134	81	AV replacement. CABG	No	1	41	Yes	27	Surv	Yes
5	81	M	28.7	191	139	CABG. MV repair. TV repair. aortic root repair	No	1	33	Yes	24	Surv	Yes
6	75	M	28.7	214	116	Ascending aorta and aortic arch replacement	Yes	1	38	No	47	Died	No
7	75	M	23.9	120	67	MV replacement. TV repair	No	3	38, 25, 25	Yes	32	Died	No
8	62	F	20.2	132	82	MV repair. TV repair	No	2	39, 41	No	24	Surv	Yes
9	73	M	43.2	112	58	Ascending aorta and aortic arch repair	No	2	45, 26	No	34	Died	No
10	53	M	39.6	392	247	Ascending aorta replacement. David surgery	Yes	2	33, 36	No	22	Surv	Yes
11	77	F	27.2	327	178	Redo ascending aorta replacement. AV re- placement. CABG	No	3	44, 2, 39	Yes	29	Died	No
12	74	М	37.4	348	168	Ascending aorta replacement. AV replace- ment. CABG	No	2	29, 24	No	24	Surv	Yes
13	84	M	24.8	230	157	AV and MV replacement. CABG	Yes	1	36	No	36	Died	No
14	55	M	30.8	226	104	Ascending aorta repair	Yes	1	34	No	28	Surv	Yes
15	77	F	19.7	236	125	Ascending aorta and aortic arch repair	No	1	50	Yes	23	Surv	Yes
16	73	F	25	422	112	Aortic root replacement. CABG	Yes	1	5	Yes	36	Died	No

MV = mitral valve; AT = aortic valve; CABG = coronary artery bypass graft; TV = tricuspid valve.

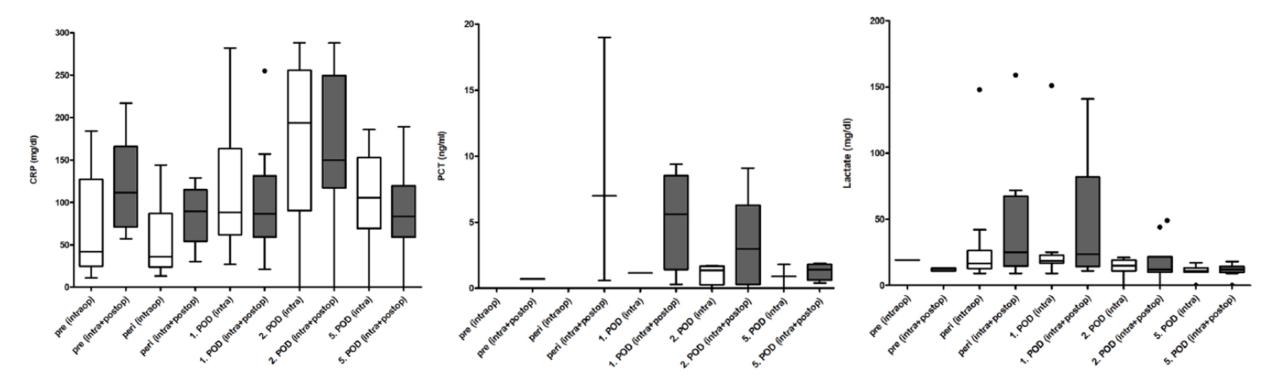
Hemodynamic, inflammatory and metabolic outcome

Short communication

Comparison of intraoperative versus intraoperative plus postoperative hemoadsorption therapy in cardiac surgery patients with endocarditis AO The International Journal of Artificial Organs


The International Journal of Artificial Organs 1–7 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0391398819831301 journals.sagepub.com/home/jao

Lars-Uwe Kühne, Robert Binczyk and Friedrich-Christian Rieß

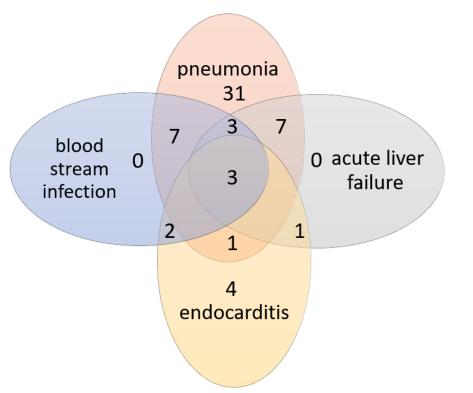

Case No.	Gender (M/F)	Weight (kg)	Age (years)	BMI	Indication and microbiological findings	Emergency procedure (Y/N)	Reoperation (Y/N)	Dialysis dependency pre (Y /N)	EURO score II pre	APACHE II pre	SOFA pre	SOFA (7.POD)	CPB time (min)	Diuresis CPB (mL/kg/min)	CytoSorb treatments (n)	Delay of CVVHD start after admission to ICU (h)	Dialysis days	Ventilator days	Vasopressor days	No. of rethoracotomies	Sternum infection (Y/N)	Stroke (Y/N)	AV block (Y/N)	ICU days	ICU survival (Y/N)	90-day survival (Y/N)
П	Μ	86	59	24	Aortic valve endocarditis (E. faecalis)	Y	Y	Ν	34.9	25	10	10	250	0.7	I	12	7	7	7	2	Ν	N	Y	20	Y	Y
12	Μ	100	72	35	Aortic valve endocarditis (E. faecalis)	Y	Ν	Ν	24.2	24	10	8	107	0.1	I.	I.	5	I.	5	I.	Ν	Ν	Ν	19	Y	Y
13	Μ	85	57	26	Aortic valve endocarditis (Proteus mirabilis)	Y	Ν	Ν	24.2	27	14	5	202	1.4	I.	6	2	3	6	0	Ν	Ν	Ν	7	Y	Y
14	F	95	82	35	Aortic valve endocarditis (Streptococcus agalactiae)	Y	Y	Ν	55.7	19	П	9	282	0.1	I.	2	30	6	15	0	Ν	Ν	Y	30	Y	Y
15	Μ	77	76	25	Aortic and mitral valve endocarditis (S. <i>aureus</i>)	Ν	Y	Ν	68.7	28	9	14	212	0.2	I	6	7	18	10	I	Ν	Ν	Ν	18	Y	Ν
16	Μ	67	75	28	Aortic valve endocarditis (E. faecalis)	Ν	Y	Ν	63.9	25	10		359	0.7	I.	2	3	3	3	I	Ν	Ν	Ν	3	Ν	Ν
17	F	62	66	24	Aortic and mitral valve endocarditis (E. faecalis)	Y	Y	Ν	32.7	15	10	14	291	0.5	I	I	20	28	2	0	Ν	Ν	Ν	26	Y	Y
18	Μ	138	68	45	Mitral valve endocarditis (Streptococcus dysgalactiae)	Y	Y	Ν	42.0	38	12	2	203	0.5	I.	2	4	5	4	I.	Ν	Ν	Ν	7	Y	Y
19	Μ	83	72	25	Aortic root abscess (Staphylococcus epidermidis)	Ν	Y	Ν	18.2	21	14	Т	212	0.0	I.	3	3	T	2	0	Ν	Ν	Ν	8	Y	Y
20	F	90	76	30	Mitral (bio) valve endocarditis (S. epidermidis)	Ν	Y	Ν	30.0	14	12	13	338	0.1	I.	12	28	I	20	0	Ν	Ν	Ν	30	Y	Y
		85.5	72	27					33.8	24.5	10.5	9	231	0.35	I.			04	5.5					18.5		
		62–138	57-82	24-45					18.2–68.7	14-38	9–14	I-14	107–359	0.0-1.4				I-28	2–20					3–30		

Hemodynamics

Inflammatory and metabolic outcome

RESEARCH ARTICLE

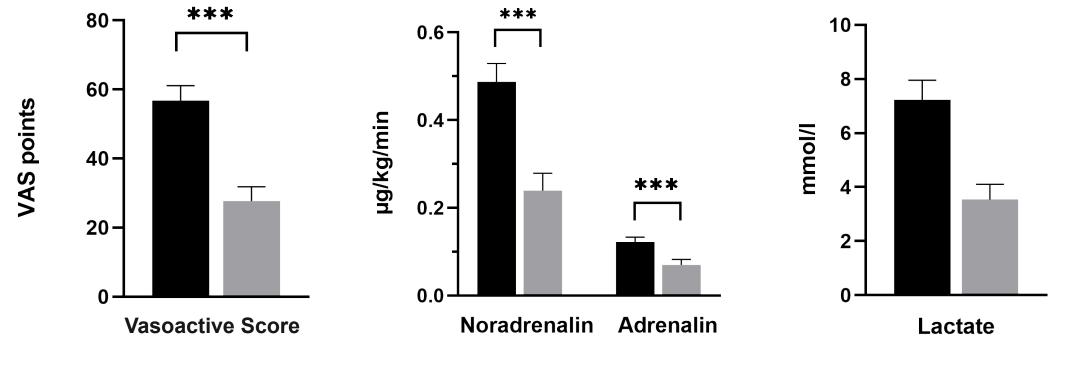
Extracorporeal cytokine adsorption: Significant reduction of catecholamine requirement in patients with AKI and septic shock after cardiac surgery


Kristina Boss¹*, Michael Jahn¹, Daniel Wendt², Zaki Haidari², Ender Demircioglu², Matthias Thielmann², Arjang Ruhparwar², Andreas Kribben¹, Bartosz Tyczynski¹

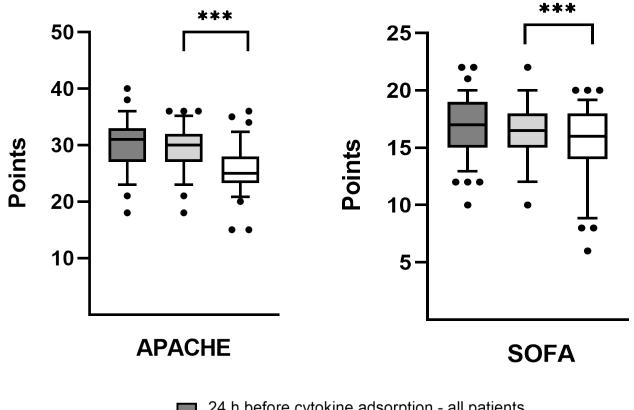
 Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany,
Department of Thoracic and Cardiovascular Surgery, West German Heart & Vascular Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany

Extracorporeal cytokine adsorption

Methods and patient characteristics

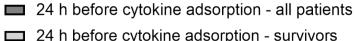

- Retrospective study
- 64 patients with septic shock and AKI after cardiac surgery
 - Pneumonia
- 58 % Male
- Mean age 67 years (range 46-83 years)
- Cytokine adsorption was applied in addition to continuous renal replacement therapy (CRRT) with citrate anticoagulation in all patients.

Kristina Boss Essen, Germany


Hemodynamics

- 24h before cytokine adsorption
- 24h after cytokine adsorption

Mortality



Predicted Mortality:

SOFA-Score 16,7 Points \triangleq 77 %

APACHE-Score 30,2 Points ≙ 73 %

Observed Mortality = 59,2 %

- 24 h before cytokine adsorption survivors
- 24 h after cytokine adsorption survivors

Highest benefit for high-risk patients!!!

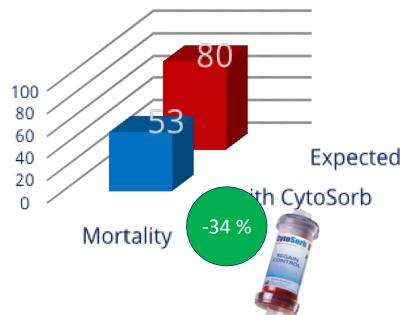
Score	Risk Group	Ν	rel. VAS Reduction [%]
	< 4 %	21	72
EuroSCORE II	4-9 % ≥ 9 %	14 27	68 67
	18	1	100
	21-24	5	62
APACHE II	25-29	21	64
	30-34	29	67
	≥ 34	6	73
	13-14	10	83
	15-16	18	67
SOFA	17	13	59
	18-22	21	71

Boss K et al., PLOS One, 2021

Artificial Organs	25
Organs	- 747

© 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

Blood Purification With CytoSorb in Critically Ill Patients: Single-Center Preliminary Experience


*Maria Grazia Calabrò, *Daniela Febres, *Gaia Recca, *Rosalba Lembo, *Evgeny Fominskiy , *Anna Mara Scandroglio, *†Alberto Zangrillo, and *†Federico Pappalardo

*Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute; and †Vita-Salute San Raffaele University of Milan, Milan, Italy

TABLE 4. Laboratory values of 16 patients with total bilirubin ≥10 mg/dL								
Values	Baseline	End of treatment	P value					
Total bilirubin (mg/dL)	17.1 ± 5	10.8 ± 5.3	0.002					
Direct bilirubin (mg/dL)	14.1 ± 4.7	8.9 ± 4.2	0.003					
Indirect bilirubin (mg/dL)	3.0 ± 1.8	1.8 ± 1.2	0.04					

- 40 patients in cardiac surgery ICU with multiple organ failure (MOF)
- Indications for CytoSorb: hyperbilirubinemia and/or ALF (70%), sepsis or septic shock (20%), SIRS (5%), rhabdomyolysis (5%)
- \circ CytoSorb integration into ECMO (19) or as stand-alone in hemoperfusion mode (21)
- o Significant reduction of VIS, as well as bilirubin, lactate, CPK and LDH
- Observed mortality of 53% vs 80% expected (based on SOFA score)

Short communication

The International Journal of Artificial Organs

Hemoadsorption treatment with CytoSorb[®] in patients with extracorporeal life support therapy: A case series

Karl Träger¹, Christian Skrabal², Guenther Fischer¹, Janpeter Schroeder¹, Larissa Marenski¹, Andreas Liebold², Helmut Reinelt¹ and Thomas Datzmann¹ The International Journal of Artificial Organs I–8 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0391398819895287 journals.sagepub.com/home/jao

- Retrospective case series, 23 pts. on ECLS in combination with CytoSorb
- Heterogeneous patient population with different ECLS indications
- Trigger events: severe hyperinflammatory activation, severe reperfu-sion injury, extended CPB times with post--cardiotomy low cardiac output, and refractory vasoplegic response with rapid progressive organ dysfunction, also severe hemolysis and hyperbilirubinemia

<u>Results:</u>

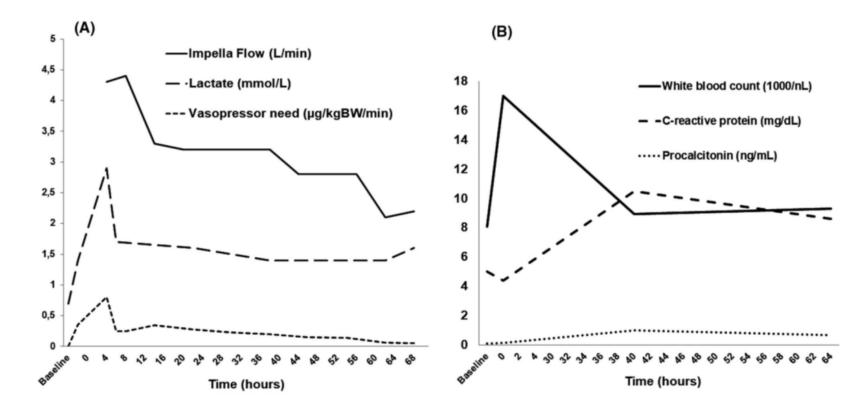
- Significant reduction of IL-6
- Significant reduction of norepinephrine demand
- Significant reduction of lactate levels

CONCLUSION:

"Due to a modulation of the cytokine response, CytoSorb may offer a potentially promising new treatment option for severe ECLS--related hyperinflamma-tion that presents with hemodynamic instability and requires high doses of vasopressors."

LETTERS TO THE EDITOR

Mechanical circulatory support with Impella 5.0 in septic shock


Zaki Haidari 🔀 Arjang Ruhparwar, Alexander Weymann

First published: 14 September 2020 | https://doi.org/10.1111/aor.13793

Case 1

- 71-year-old male
- CHF due to DCM (LVEF: 15%)
 - CRT (11 years ago)
- CDRIE: Staph. lugdunensis
 - Uncontrolled infection
 - Acute renal failure
 - Pulmonary embolisms
 - TLE: unsuccessful (adhesions)
- Surgical lead extraction
 - CPB with hemoadsorption
 - Postoperative: septic shock
 - CRRT including hemoadsorption
 - MCS: Impella 5.0

Open Access Case Report

Urgent Coronary Artery Bypass Grafting Complicated by Systemic Inflammatory Response from Fulminant Herpes Zoster Successfully Managed with Adjunct Extracorporeal Hemoadsorption: A Case Report [†]

by ⁽²⁾ Zaki Haidari ¹ ⁽²⁾, ⁽²⁾ Wilko Weißenberger ¹ ⁽²⁾, ⁽²⁾ Bartosz Tyczynski ² ⁽²⁾, ⁽²⁾ Ender Demircioglu ¹ ⁽²⁾, ⁽²⁾ Efthymios Deliargyris ³ ⁽²⁾, ⁽²⁾, ⁽²⁾ Martin Christ ⁴ ⁽²⁾, ⁽²⁾, ⁽²⁾ Matthias Thielmann ¹ ⁽²⁾,

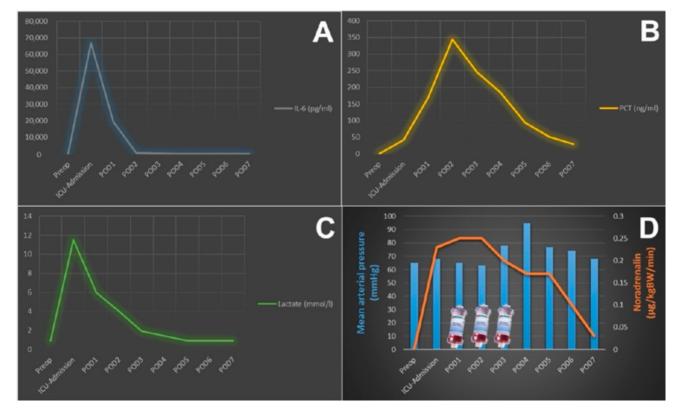
- ¹ Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, 45122 Essen, Germany
- ² Department of Nephrology, University Hospital Essen, 45147 Essen, Germany
- ³ Cytosorbents Inc., 305 College Road East, Princeton, NJ 08540, USA
- ⁴ Department of Cardiology and Intensive Care Medicine, Knappschaftskrankenhaus Bottrop, 46242 Bottrop, Germany
- * Author to whom correspondence should be addressed.
- [†] Presented at the ESC Acute CardioVascular Care 2022, Marseille, France, 18–20 March 2022.

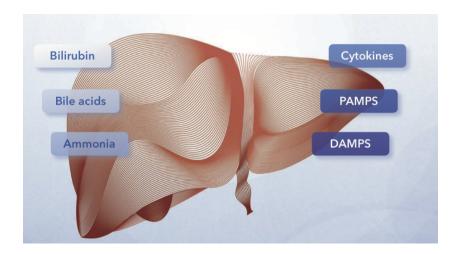
Academic Editor: Ferdinando Mannello

J. Clin. Med. 2022, 11(11), 3106; https://doi.org/10.3390/jcm11113106

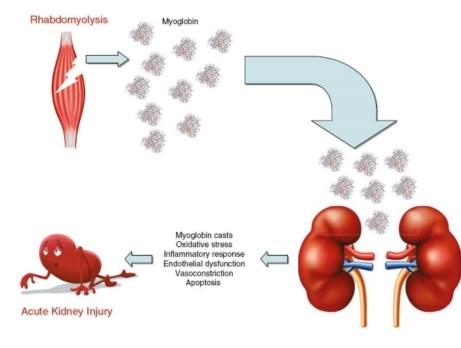
Received: 22 March 2022 / Revised: 22 May 2022 / Accepted: 28 May 2022 / Published: 31 May 2022

Case 2


- 56 years, male
- Severe COPD and PAD
- IAP due 3VD with LM-Stenosis
 - Good LV function
 - Proximal LSA stenosis: steal syndrome
- Herpes zoster
 - Aciclovir
 - Analgesics and topical therapy
- Heparin and Nitro i.v.
 - 8 days


CABG

- Anesthesia induction: noradrenalin 0.75 µg/kgBW/min
- Cardiopulmonary bypass: noradrenalin 1.5 µg/kg/BW/min
 - 1000 mg cortisone IV
 - 2mg clemastin IV
 - Volume therapy: fluid balance +8.5 L
 - Additional dose of 500 mg aciclovir
 - 8 units of RBC
 - 4 units of platelets
 - 5000 IE of prothrombin complex concentrate
 - 16g of fibrinogen
- Hemoadsorption: intra- and postoperative (CRRT)
- ECMO
 - Veno-arterial till POD 2
 - Veno-venous till POD 15
- Clinical Follow-up at 6 months: asymptomatic and active



What about other complications?

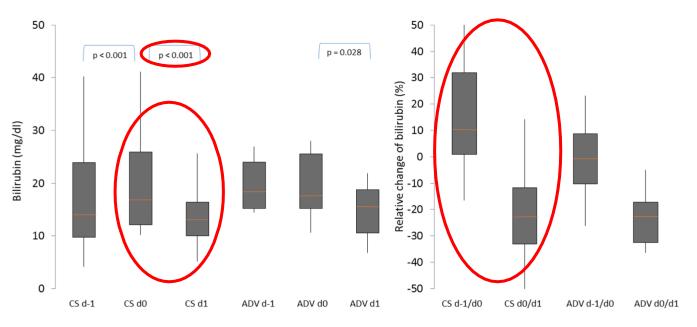
 Rhabdomyolysis is not a frequent postcardiac surgery complication, but more than 40% of patients with rhabdomyolysis develop AKI.² The incidence of liver failure postcardiac surgery is 4%, but as many as 10% of patients who received cardiopulmonary bypass (CPB) experience some level of hepatic injury.¹

Adapted from: Lippi et al. Serum myoglobin immunoassays: obsolete or still clinically useful?" Clinical Chemistry and Laboratory Medicine (CCLM), vol. 54, no. 10, 2016, pp. 1541-1543.

¹ Chacon et Schulte, Liver Dysfunction in Cardiac Surgery – What Causes It and Is There Anything We Can Do? Jour Cardiovasc Anesth ² Omar et al., Rhabdomyolysis following Cardiac Surgery: A Prospective, Descriptive, Single-Center Study. Biomed Res Int. 2016

www.nature.com/scientificreports

Check for updates


scientific reports

OPEN Successful elimination of bilirubin in critically ill patients with acute liver dysfunction using a cytokine adsorber and albumin dialysis: a pilot study

> Christina Scharf^{1⊠}, Uwe Liebchen¹, Michael Paal², Andrea Becker-Pennrich¹, Michael Irlbeck¹, Michael Zoller¹ & Ines Schroeder¹

- Retrospective case series, 39 pts with acute liver dysfunction (ALD) and corresponding high levels of bilirubin (>10 mg/dl)
- CytoSorb integrated into high flux dialysis (№ 33) vs. Advanced organ support system ADVOS (№ 6)
- Significant and comparable decrease in bilirubin in critically ill patients by both CytoSorb and ADVOS

"An advantage of CS is its easy integration into high-flux dialysis, which allows its use at smaller hospitals."

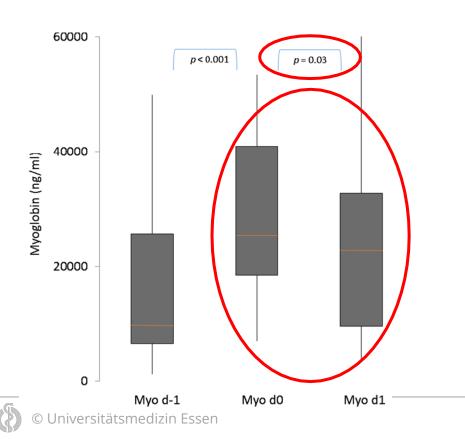
Figure 2. Development and relative reduction in bilirubin levels in patients with CytoSorb and ADVOS therapy. d–1: day before treatment, d0: shortly before treatment, d1: directly after treatment, CS: CytoSorb, ADV: advanced organ support; orange line represents the median, grey boxes the interquartile range and the whiskers are limited to 1.5 times the interquartile range.

Scharf *et al. Crit Care* (2021) 25:41 https://doi.org/10.1186/s13054-021-03468-x

Critical Care

RESEARCH

Open Access



Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis

Christina Scharf^{1*}, Uwe Liebchen¹, Michael Paal², Michael Irlbeck¹, Michael Zoller¹ and Ines Schroeder¹

- Retrospective case series, 43 pts with anuric renal failure
- Massive rhabdomyolysis (med. myoglobin level > 25,000 ng/ml)
- 22 pts (51%) with ongoing rhabdomyolysis
- 1/3 of pts on ECMO
- SOFA score was 19 (expected mortality > 90%)

Results:

- Significant reduction of myoglobin (a median relative reduction rate of 29%)
- Observed in-hospital mortality vs. SAPS II score-predicted was 67.4% and 92.5%, respectively)

"In summary, myoglobin removal with the cytokine adsorber CS integrated into a high-flux dialyzer can be recommended for clinical routine due to its existing CE mark, ease of use and absence of side effects."

Summary

CytoSorb therapy post cardiac surgery - in whom?

Patients not responding to standard therapy for:

- Severe systemic hyperinflammation (SIRS) complicated with vasoplegia
- Septic shock
- Endocarditis with high-grade intraoperative findings, development of AKI, and increasing vasopressor demand
- Severe hyperbilirubinemia
- Severe myoglobinemia

CytoSorb therapy post cardiac surgery - in whom, when?

- 6 24 hrs. after the diagnosis (of refractory shock or non-response to standard of care)
- Norepinephrine requirement > 0.3 µg/kg/min (or use of 2 or more vasopressors)
- IL-6 > 300 500 pg/mL*
- Poor lactate clearance
- In liver dysfunction, bilirubin \geq 10 mg/dL (> 170 μ mol/L)
- In rhabdomyolysis, myoglobin ≥ 10,000 ng/mL

* Depending on the clinical picture and disease progression

CytoSorb therapy post cardiac surgery - in whom, when and how?

- Anticoagulation as usual
- Stand-alone configuration / hemoperfusion mode
- (C)RRT
- ECMO / ECLS
- Max 24 hrs. per adsorber
- Blood flow through CytoSorb: 100 700 ml/min

Conclusions

- Hemoadsorption as an adjunct therapy in the postoperative course of high-risk cardiac surgery patients seems to provide:
 - hemodynamic stabilization in sepsis/SIRS (reduced VIS and/or vasopressor demand)
 - improved tissue perfusion (reduced lactate levels)
 - support liver and kidney function (reduced bilirubin and myoglobin levels)

• Limitations:

• data based on retrospective small studies

Prospective studies with well-defined patient selection criteria and therapy timing and duration are needed to evaluate the role of hemoadsorption with CytoSorb in high-risk cardiac surgical patients.