Zebrafish modeling of variants of unknown significance: preliminary results

Andrew Prendergast <u>no disclosures</u> 22 Jun 2022 IMAD Meeting

The lag between candidacy and causation

- Limited by number of testable genes
- Limited by time/money
- Limited by sample size
- You can't see through them (usually)

Zebrafish for rapid vascular analysis

Transparency, scale, and transgenics

Tg(gata1:dsRed)

How is fish aorta different?

Mural Cell Recruitment to the Zebrafish Dorsal Aorta

Ultrastructure of Mural Cells Investing the Zebrafish Dorsal Aorta

Stratman et al. (2017)

Approaches to loss of function

Disease model: IAD (in F₂)

- Only allele to meet selection criteria is *ppil4* G132S
- Knockout of zebrafish *ppil4* in exon 5 causes arborization defects, aneurysms, and hemorrhages

Barak et al. (2021)

Disease model: IAD (in F₂)

unpublished

Elapsed time start to F₂: <u>17 months</u>

Approaches to loss of function

fbn1 col1a2 col5a1 col5a2a/b emilin1a/b mib1

Marfan syndrome

Ehlers-Danlos syndrome

Thoracic aortic aneurysm

Disease model: TAA (in F₀)

emilin1

mib1

Bulat Ziganshin

CRISPR/Cas9 to generate LOF models

Prendergast et al. 2022

Observed phenotypes

Incidence of phenotypes

Elapsed time: 39 days

Conclusions and questions

- F₀ phenotypic is possible, fast, can screen dozens of candidates rapidly
- What does TAA mean in an animal that does not have substantial aortic lamination? Focus on hemorrhagic incidence?
- Can we do things to push appearance of phenotypes farther forward? (Epinephrine, etc.)
- Rule-in, not rule-out

Acknowledgements

YZRC Staff

- Yue Yang
- Ramil Noche

YZRC Administration

- Stefania Nicoli
- Pat Preisig

Yale Aortic Institute

- John Elefteriades
- Bulat Ziganshin
- Mohammad Zafar
- Dimitria Papanikolaou
- Sandip Mukherjee

Talk goals

- Sell zebrafish as a vascular disease model
- Show a few "traditional" (F₂) mutants we have generated for IAD and what we learned
- Show an approach for rapid (F₀) loss-offunction fish we have generated for TAA

Fish vascular tissue regenerates well

Poss et al. 2002

How is zebrafish different?

- 7 dpf aorta is characterized by endothelial cell layer with closely juxtaposed mural cells
- No internal elastic lamina at this stage
- Note nucleated RBCs!

Miano et al. (2013)

How is zebrafish different?

- 1 mpf aorta exhibits 4 cell types: endothelial (E), VSMCs (S), adventitial fibroblasts (F), and melanocytes (M)
- Layered structure is evident

Miano *et al.* (2013)

How is zebrafish different?

 3 mpf (adult) aorta has a clear internal elastic lamina (*) and differentiated VSMCs (arrows indicate plaques)

Miano *et al.* (2013)