

UZ GENT UNIVERSITEIT GENT

70TH ESCVS CONGRESS & 7TH IMAD MEETING

Variant curation: tips and tricks

Laura Muiño Mosquera Ghent University Hospital

Challenges of next generation sequencing

Loads of data

Challenge: Distinguish which variants cause disease and which are normal genetic variations

Albinism: OCA2

Variant classification guidelines

2015

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards ¹, Nazneen Aziz ², Sherri Bale ³, David Bick ⁴, Soma Das ⁵, Julie Gastier-Foster ⁶, Wayne W Grody ⁷, Madhuri Hegde ⁸, Elaine Lyon ⁹, Elaine Spector ¹⁰, Karl Voelkerding ⁹, Heidi L Rehm ¹¹, ACMG Laboratory Quality Assurance Committee

2022

Stepwise ABC system for classification of any type of genetic variant

2017

Sherloc: a comprehensive refinement of the ACMG–AMP variant classification criteria

Keith Nykamp, PhD¹, Michael Anderson, PhD¹, Martin Powers, MD¹, John Garcia, PhD¹, Blanca Herrera, PhD¹, Yuan-Yuan Ho, PhD¹, Yuya Kobayashi, PhD¹, Nila Patil, PhD¹, Janita Thusberg, PhD¹, Marjorie Westbrook, PhD¹, The Invitae Clinical Genomics Group² and Scott Topper, PhD, FACMG¹

ACMG guidelines

Richards et al., Genet Med 2015

(1) Classification differs between labs

Pepin et al., Genet Med 2016

(2) High amount of variants of unknown significance

Not all VUS are the same!

To be communicated to patients Further work-out if necessary and possible Future reclassification

Not to be communicated to patients

Ellard et al., ACGS, 2020

TIPS AND TRICKS TO INCREASE CONSISTENCY AND DECREASE VUS

cbEGF domain, Cys-creating variants

https://www.clinicalgenome.org/site/assets/files/7445/ clingen_fbn1_acmg_specifications_v1.pdf

TIPS AND TRICKS TO INCREASE CONSISTENCY AND DECREASE VUS

CONCLUSION

- 1. The advent of NGS has been a great step forward in genetic diagnosis but has brought alone the difficult task of variant classification.
- 2. There are still too many variants of unknown significance and seeking the way to decrease these numbers is very important for clinical decision making.
- 3. Gene curation, gene specific guidelines and gene specific knowledge can aid in reducing the amount of VUS
- 4. Further investigations might be necessary to learn the significance of a certain variant

70TH ESCVS CONGRESS & 7TH IMAD MEETING

Thank you!

laura.muinomosquera@uzgent.be

