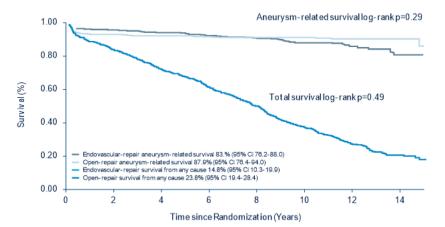


Role of Endoanchors in Pevention and Management of Endograft Failures

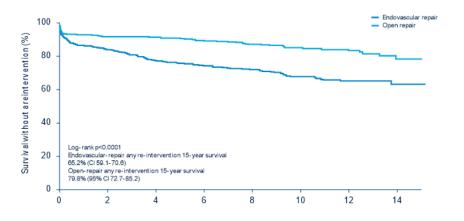
APOSTOLOS K. TASSIOPOULOS PROFESSOR AND CHIEF DIVISION OF VASCULAR SURGERY INTERIM CHAIRMAN, DEPARTMENT OF S

GOLD STANDARD FOR ANEURYSM REPAIR

Open AAA Surgery


- Proven long-term durability
- Competent suture lines; thrombus removal
- High perioperative/physiologic burden
- Extensive LOS and recovery

Goal of Contemporary AAA Therapy:

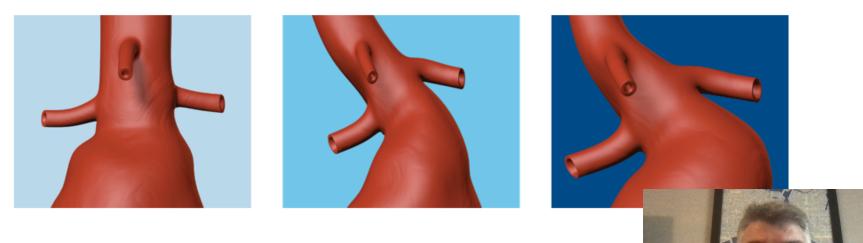

Long-Term Durability of OSR w/ Peri-op Benefi

COMPARABLE SURVIVAL, GREATER REINTERVENTIONS VS OPEN REPAIR¹

No. at Risk								
Endovascular Repair	626	543	474	409	339	263	135	41
Open Repair	626	534	464	399	333	257	143	50

No.at Risk								
Endovascular Repair	626	469	381	323	264	192	90	28
Open Repair	626	506	436	357	282	214	112	35

EVAR 1: EVAR Durability at 15 years


SEAL ZONES ARE THE ACHILLES HEEL OF

Seal zones are a distributed function:

 Dependent on length, angle, width, conical shape, Ca²⁺, thrombus, device design, etc.

Adding hostile neck characteristics leads to:

 Higher risk of type la's, neck degeneration, secondary procedures, late failure¹

Antoniou, et al., J Vasc Surg 2013;57:527-38.

HOSTILE PROXIMAL NECK PREDICTS CHALLENGES

4.5x

Type I endoleaks 4.5x more likely at 1-year after endograft implantation in hostile proximal aortic neck anatomy (P = .010)

Aneurysm-related mortality risk 9x greater in hostile neck anatomy at 1-year (P= .013)

Meta-Analysis of 7 major studies in EVAR by Antoniou et al¹ compared outcomes in hostile vs. friendly neck anatomies (total patients N = 1559)

9x

Torsello et al, 2011177Endurant™AbuRahma et al, 2010238AneuRx™, Excluder™*, Zenith™*, Talent™Hoshina et al, 2010129Excluder™*, Zenith™*Abbruzzese et al, 2008565AneuRx™, Excluder™*, Zenith™*Choke et al, 2006147Talent™, Zenith™*, Excluder™*, Excluder™*Fulton et al, 200684AneuRx™Fairman et al, 2004219Talent™	Study	Sample Size	Endografts
Hoshina et al, 2010129Excluder™*, Zenith™*Abbruzzese et al, 2008565AneuRx™, Excluder™*, Zenith™*Choke et al, 2006147Talent™, Zenith™*, Excluder™*Fulton et al, 200684AneuRx™	Torsello et al, 2011	177	Endurant™
Abbruzzese et al, 2008 565 AneuRx™, Excluder™*, Zenith™* Choke et al, 2006 147 Talent™, Zenith™*, Excluder™* Fulton et al, 2006 84 AneuRx™	AbuRahma et al, 2010	238	AneuRx™, Excluder™*, Zenith™*, Talent™
Choke et al, 2006 147 Talent™, Zenith™*, Excluder™ Fulton et al, 2006 84 AneuRx™	Hoshina et al, 2010	129	Excluder™*, Zenith™*
Fulton et al, 200684AneuRx™	Abbruzzese et al, 2008	565	AneuRx™, Excluder™*, Zenith™*
	Choke et al, 2006	147	Talent [™] , Zenith ^{™*} , Excluder [™]
Fairman et al. 2004 219 Talent™	Fulton et al, 2006	84	AneuRx™
	Fairman et al, 2004	219	Talent [™]

¹ Antoniou GA et al. JVS. 2013;57(2):527-38

RISKS OF HOSTILE NECK ANATOMY

META-ANALYSIS OF 16 MAJOR STUDIES¹ HIGHER RISKS IN HOSTILE NECKS

Total sample size: n=11,959 patients

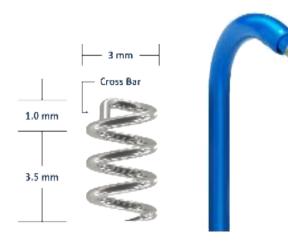
- 8920 favorable neck
- 3039 hostile neck

Outcome	n	Hostile Neck	Favorable Neck	Odds Ratio (95% Cl)	p- value
30-Day: All studies					
Primary Technical Success	6	1036 (96.8%)	3497 (98.3%)	0.45 (0.19, 1.06)	0.07
Intraoperative adjuncts	5	991 (15.4%)	3199 (8.8%)	1.88 (1.15, 3.07)	0.01
Stent-graft migration	4	1245 (1.6%)	4225 (0.9%)	2.08 (1.20, 3.62)	0.009

Outcome	n	Hostile Neck	Favorable Neck	Odds Ratio (95% Cl)	p- value
All studies					
Early type I	8	1290 (6.5%)	3849 (4.0%)	2.92 (1.61, 5.30)	0.0004
Early type II	3	867 (8.5%)	3106 (10.8%)	0.74 (0.56, 0.97)	0.03
Late type I	8	2454 (7.1%)	7719 (3.8%)	1.71 (1.31, 2.23)	<0.0001
Late type II	6	1292 (9.1%)	3617 (10.5%)	0.74 (0.55, 0.99)	0.05

Further substantiation that EVAR in hostile necks faces significant challenges to p

¹ Stather PW, Wild JB, Sayers RD, Bown MJ, Choke E. Endovascular aortic aneurysm repair in patients with hostile neck anatomy. J Endovasc Ther. 2013 Oct;20(5):623-37. do

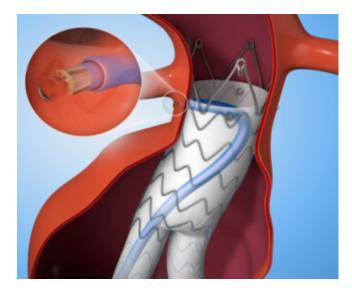


Unlike Open Repair, no endografts offer techniques for *radial fixation*

• Yet, AAA is a dilating disease

Heli-FX EndoAnchor System – Facilitates EndoSuture Aneurysm Repair (ESAR)

- Provides radial fixation^{1,2}
- Increases proximal seal competency³

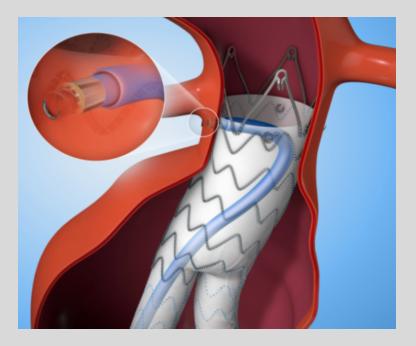


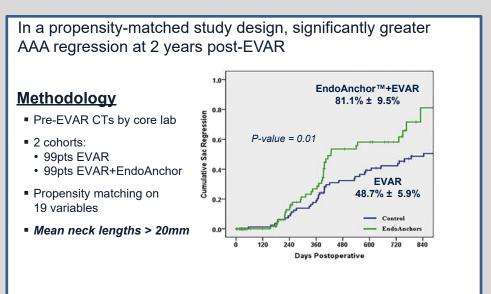
Melas et al. J Vasc Surg. 2012; 55(6):1726-33
 Perdikides et al. J Endo Ther 2012; 19:707-715
 Arko, et al., J Vasc Surg 2019;70:732-40

Transmural Fixation of EndoAnchors Has Unique Benefits

Establishes the strength of a sutured anastomosis: EndoAnchorTM implants, which secure the aorta to the graft, have a protective effect against neck dilatation¹

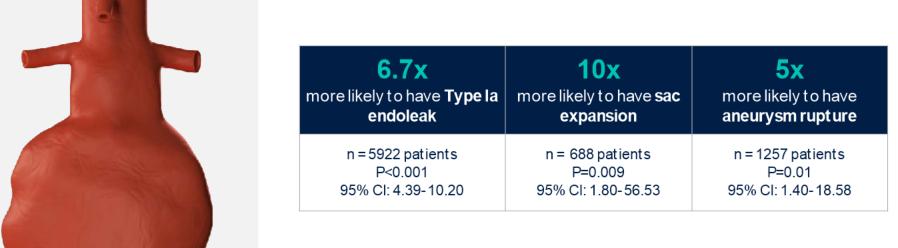
Protects seal in a hostile neck: 100% freedom from type Ia endoleak (N=86) at 2-year follow-up after prophylactic implantation (median neck length: 11.5mm)² in ANCHOR


Promotes sac regression: Significantly greater regression with EndoAnchor[™] fixation at 1-year post EVAR (29% vs. 20% without EndoAnchor[™] fixation, p=.02)³



1.Tassiopoulos AK et al. J 2.Presentation by Dr. Willi 3.Presentation by Dr. Bart

Endoanchors promote increased rate of AAA sac regression


Muhs, BE et al. J Vasc Surg. 2018

EVAR OUTCOMES IN WIDE NECK ANATOMY

Metanalysis of 6 observational studies reporting on a total of 6602 patients (1616 with large and 4986 with small diameter neck)

- Patients with large proximal aortic neck were older (P=0.001).
- The provalence of male conder (OD-1 62 OE0/ CI-1 24 1 00, D-0 001) CAD (OD-1 20 OE0/

- sac expansion (HR=10.07, 95% CI: 1.80-56.53; P=0.009),
- aneurysm rupture (HR 5.10, 95% CI: 1.40-18.58; P=0.01), and
- survival (HR=1.55, 95% CI: 1.08-2.24; P=0.02).

Kouvelos et

DEFINITION OF WIDE NECK

There is no clear threshold definition for wide proximal AAA neck diameter

Emerging trend in literature - wider necks have greater risks

- Type la endoleaks
- Secondary procedures
- Rupture
- Mortality

This trend is consistent across varying neck diameters, followup periods, and devices

Study characteristics¹

Study	Country	Single/ Multicenter	Study design	Recruitment period	Definition of large diameter
AbuRahma (2018)	USA	Single	Retrospective	2003-2015	>31 mm
Howard (2018) Oliveira (2018)	Australia The Netherlands	Multi Multi	Registry Registry	2011-2017 2009-2011	≥25 mm ≥30 mm
Oliveira (2017)	Portugal	Multi	Retrospective	2008-2012	≥30 mm
Kaladji (2015)	France	Multi	Retrospective	1998-2012	≥30 mm
Jim (2010)	USA	Multi	Registry	2002-2003	≥28 mm (stent graft ≥32 mm) ≥28 mm
McFarland (2019) ²	USA	Single	Retrospective	2000-2016	≥29 mm
Gargiulo (2017) ³	Italy / France	Multi	Retrospective	2009-2012	≥28 mm

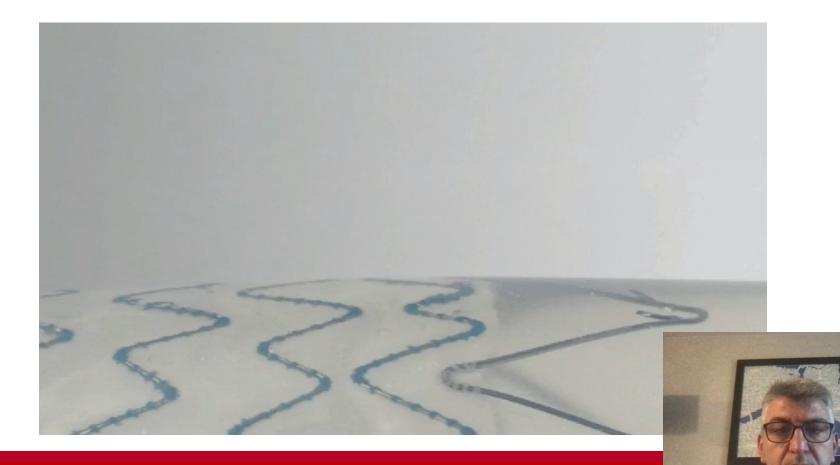
NECK DILATATION

NECK DILATATION LARGE DIAMETER NECKS

Data shows neck dilatation is common ¹			Large diameter necks have worse outcomes ³		
24.6% of all EVAR patients had neck dilatation ¹	100% of all wide necks (≥28mm) at 24m had neck dilatation ²		6x More likely Type Ia endoleak (p<0.001) in large diameter necks ³ >10X More likely sac exp (p=0.009) in lar diameter neck		
 Meta analysis* 12 articles (1998- 2015) 	 3 European centers 2009-2012 118 pts ≥ 24m follow-up 		 Large diameter necks have worse outcomes Meta analysis; 6 studies; 6,602 pts 		
2015) • 8,550 pts * Data point from subset of full metanalysis			5.922 pts95% Cl	• 688 pts • 95% Cl	

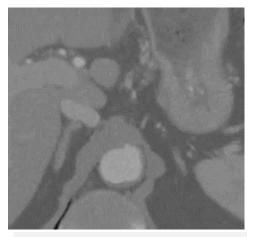
¹ Kouvelos. J Endovasc Ther. 2017;24(1):59-67
²Gargiulo M, et al. J Vasc Surg. 2017;66:1065-1072
³ Kouvelos, et al., The Journal of Cardiovascular Surgery 2019 April;60(2):167-174

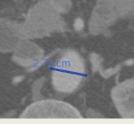
DYNAMICS OF AORTIC SEAL ZONE



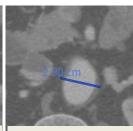
NECK DILATATION PREVENTIONS - ANCHOR

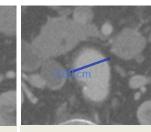
Mechanism of endoanchor function

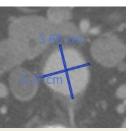



Predictors Of Aortic Neck Dilation Between The 1-month Post-operative And 12-month CT

Aortic Level	Predictors of Dilatation at Specified Level	Coefficient*	Effect	P Value
	Endograft type	0.62 (0.12, 1.04)	*	.006
Lowest renal	Aortic aneurysm sac diameter	-0.04 (-0.07, 0.00)	Protective	.020
	Aortic diameter at lowest renal	0.16 (0.08, 0.24)	Risk factor	<.001
	Aortic neck length	-0.02 (04, 0.00)	Protective	.021
	Infrarenal Angulation	0.02 (0.00, 0.04)	Risk factor	.016
	Endograft oversizing	5.37 (2.34, 8.39)	Risk factor	.001
5mm distally	Aortic diameter at lowest renal	0.17 (0.07, 0.26)	Risk factor	.001
	Endograft oversizing	6.00 (2.68, 9.31)	Risk factor	.001
10mm distally	Aortic diameter at lowest renal	0.17 (0.04, 0.29)	Risk factor	.003
Torrini distany	Endograft oversizing	4.86 (0.13, 9.58)	Ri	
	Number of EndoAnchors placed	-0.29 (-0.55, -0.04)	Pr	
Suprarenal level	Suprarenal aortic diameter	0.08 (0.01, 0.16)	Ri	100




Pre Operative CTA

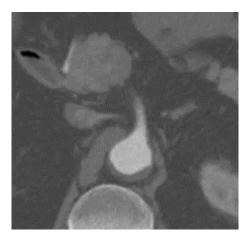

Diameter at lowest renal: **27mm**

Diameter 3mm below renal: **29mm**

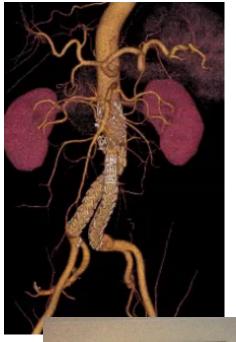
Diameter 9mm below renal: **30mm**

Diameter 15mm below renal:**36mm**

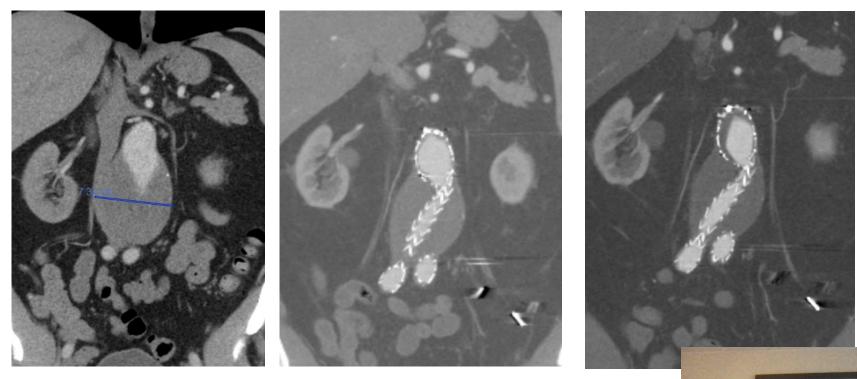
Short Conical Neck

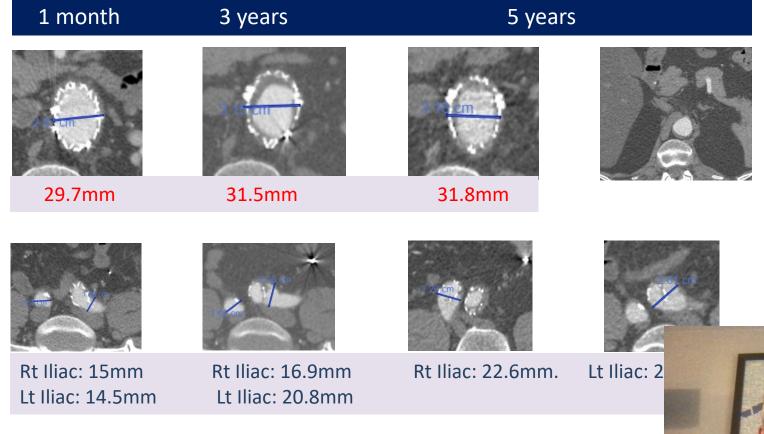


Intraoperative Images



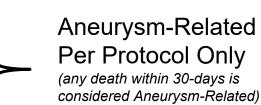
3-year Post Operative CTA : No endoleak





Pre-Op (73mm)

1-year Post Op (65mm) Shrinking AAA sac 3-year



2-Year Outcomes

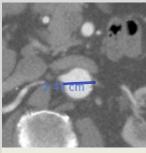
Kaplan-Meier Estimates	1-YEAR	2-YEAR
Freedom from All-Cause Mortality	92.8%	86.7%
Freedom from Aneurysm-Related Mortality	94.3%	94.3%
Freedom from 2 nd Endo Procedures	95.5%	95.5%
Freedom from AAA Rupture	100%	100%

Aneurysm-Related Mortality:

- Day 5: Cardiac arrest
- •Day 6: Cardiac arrest, CHF
- •Day 9: Cardiac and respiratory arrest
- •Day 13: Acute alcoholic hepatitis, acute renal failure, acute pancreatitis

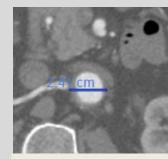
2nd Endovascular Procedures for Proximal Neck:

•One patient, Day 9, additional graft extension and sac embc treat a type Ia endoleak. Resolved.

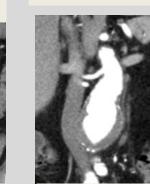

73 YEAR OLD MALE WITH 5.6 CM AAA, SHORT NECK AND AN ACCESSORY RIGHT RENAL ARTERY

Anatomic Challenges -Short neck: 7mm -Accessory right renal -Lateral angulation : 54°

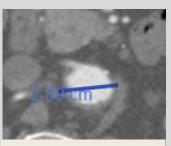
Plan EVAR with coil embolization of the accessory right renal artery and endoanchors



Rt renal artery Aortic Diameter 24mm


Accessory Rt renal

3.5mm

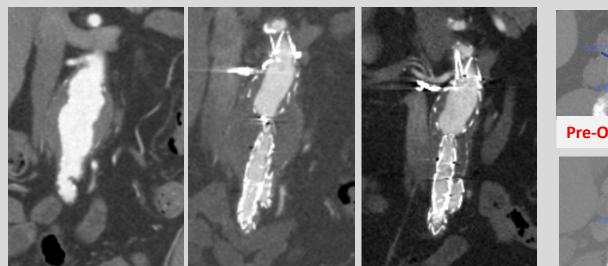

Proximal end of AAA

5mm below Rt renal Aortic Diameter 24mm

Main Rt renal 4.0 mm

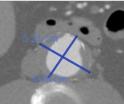
10mm below Rt renal Aortic diameter 29mm Accessory Lt renal

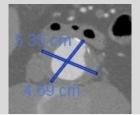
73 YEAR OLD MALE WITH 5.6 CM AAA, SHORT NECK AND AN ACCESSORY RIGHT RENAL ARTERY


Post endograft deployment (No endoleak)

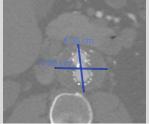
Proximal seal zone reinforced with 8 endoanchors for short proximal neck

73 YEAR OLD MALE WITH 5.6 CM AAA, SHORT NECK AND AN ACCESSORY RIGHT RENAL ARTERY

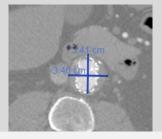



Pre-Op

1-month post Op


1-year post Op

Aortic Sac regression 1-year post EVAR



Pre-Op CTA AAA max diameter 57mm

1-month Post-Op Max diameter 52

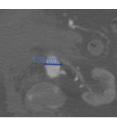
AAA max d

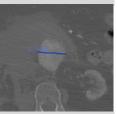
1-year Post-Op

SUMMARY

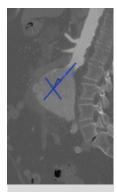
- Hostile necks associated with worse outcomes after EVAR
- Higher need for expanding or enhancing proximal seal zone to decrease risk of Type 1 endoleaks
- Procedures should be tailored to individual patient characteristics and physician expertise
- Close long-term follow up particularly important

 Endoanchors in treatment of Intraoperative Type Ia endoleaks?




72 year old female with ruptured AAA and hostile neck anatomy

Pre-op CTA

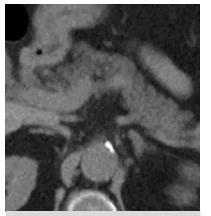

Aorta at lowest renal: 19mm

Aorta 15mm below lowest renal: 38mm

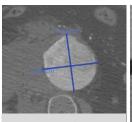
Aortic neck length: 9 mm

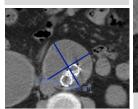
Neck: Severe anterior angulation 77° and posterior bulge

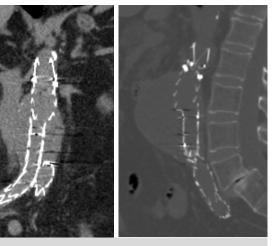
72 year old female with ruptured AAA and hostile neck anatomy: Intraoperative Angio



Proximal Seal zone reinforcement with 8 HeliFx endoanchors



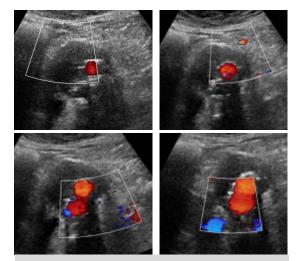

72 year old female with ruptured AAA and hostile neck anatomy Postoperative CT scan 4 months after EVAR


Non-contrast CT due to renal insufficiency

Pre-op CTA Max diameter 70mm

Max diameter 62mm 4 months post-op

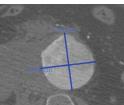
Decreasing aortic sac size 4 months post EVAR



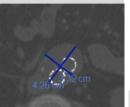
72 year old female with ruptured AAA and hostile neck anatomy

Decreasing aortic sac diameter on duplex US 7 months post EVAR Max diameter 46mm

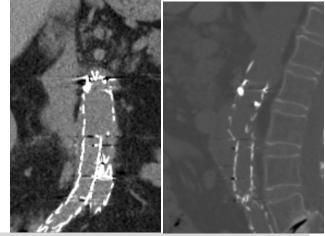
No endoleak 7 months post EVAR



72 year old female with ruptured AAA and hostile neck anatomy Postoperative CT scan 12 months after EVAR



Non-contrast CT due to renal insufficiency


Further decrease in sac diameter at 12 months

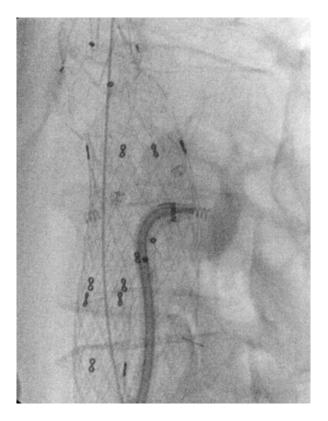
Pre-op CTA Max diameter 70mm

Max diameter 42mm 12 months post-op

Decreasing aortic sac size 12 months post EVAR

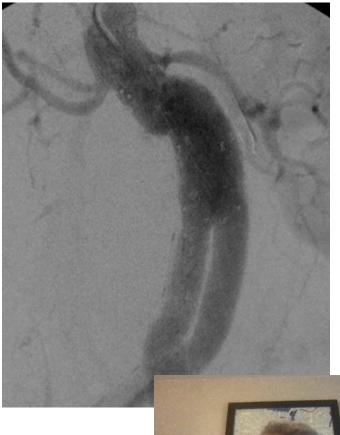
CASE PRESENTATION

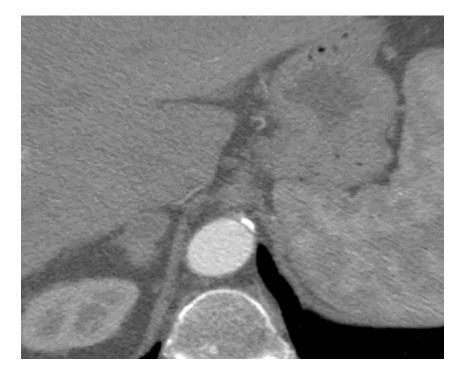
83 year old female 12 years after EVAR with AneuRx presented with abdominal pain and a pulsatile aneurysm

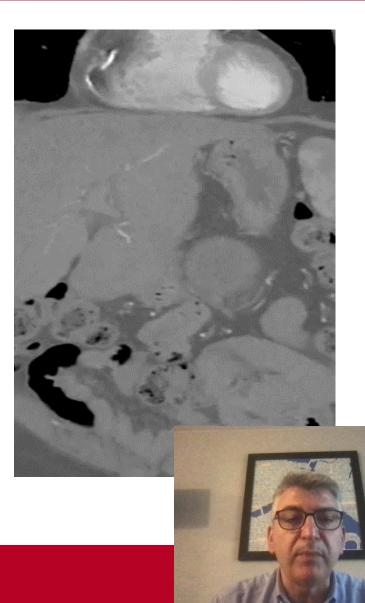


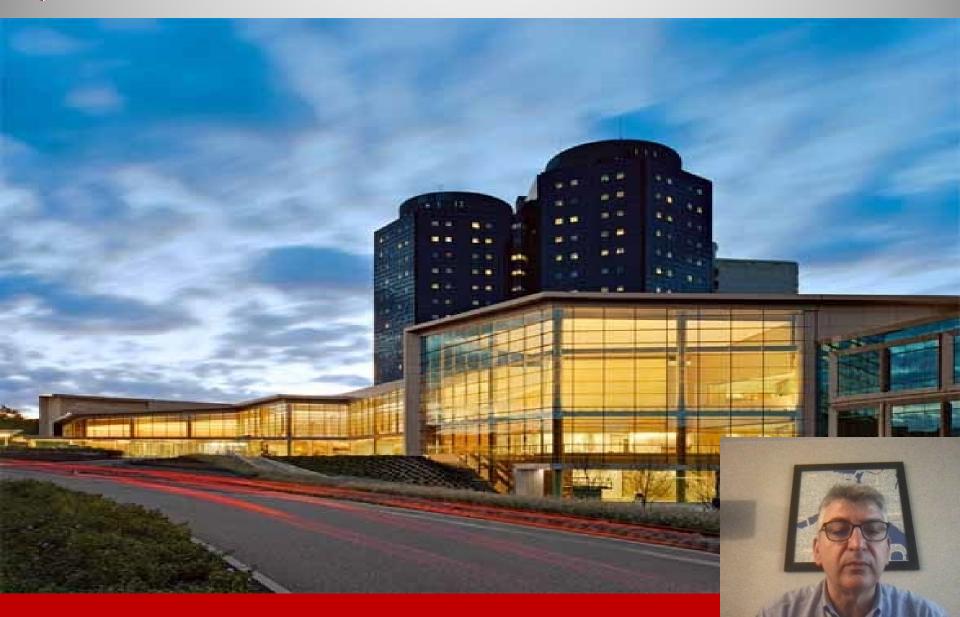
CASE PRESENTATION

83 year old female 12 years after EVAR with AneuRx presented with abdominal pain and a pulsatile aneurysm








Repair of Remote Type IA endoleak 1-month post repair

THANK YOU

