

Oxford Abdominal Aortic Aneurysm Study

Multi-modal approach to predict AAA growth

~ Towards Precision Management of Abdominal Aortic Aneurysms~

Regent Lee

MBBS, MS (vasc surg), DPhil, FRCS (vasc surg)

UK Research and Innovation Future Leaders Fellow, Associate Professor of Vascular Surgery, University of Oxford

Conflict of Interest Declaration: Regent Lee is an academic co-founder and chief medical officer of AiSentia Limited.

OxAAA team

Co-PI: Professor Ashok HandaNicholas KilloughKirthi BellamkondaFelicity WoodgateMatthew WilliamsIsmail CassimjeeAmy JonesPierfrancesco LapollaJoel WardAnirudh ChandrashekarKirthi Bellamkonda

Acknowledgements

Oxford Regional Vascular Services Unit

Target Discovery Institute, University of Oxford

Institute of Biomedical Engineering, University of Oxford

Discrepancies in the management of 'small' AAAs between geographical regions

Surveillance Interval

Surgical threshold

methods for the prediction of AAA growth can impact on these aspects of clinical practice

Prediction of growth in AAA patients – OxAAA study

Oxford Abdominal Aortic Aneurysm Study

Methods:

- Prospective cohort study of AAA patients undergoing NHS surveillance pathway
- Individual consent (IRB: SC/0250/13)
- Recruitment: since Nov 2013
- At baseline:
 - AAA size by U/S max AP diameter (APD)
 - Measurement of FMD
 - Marker of endothelial dysfunction
 - Collection of plasma samples
 - EDTA, platelet poor plasma
- Future growth rate calculation :

(Δ APD/APD at baseline)

(number-of-days-lapsed/365days)

- For patient receiving AAA surveillance:
 - repeat sampling yearly follow up
- For patients undergoing AAA surgery:
 - Repeat sampling before and after Surgery
 - Intra-operative tissue biopsy

Flow Mediated Dilatation (FMD) as a biomarker of AAA growth

Flow mediated dilatation (FMD) of brachial artery is physiological index of endothelial function (ie 'healthiness' of the artery)

Flow Mediated Dilatation and Progression of Abdominal Aortic Aneurysms

R. Lee ^{*}, K. Bellamkonda, A. Jones, N. Killough, F. Woodgate, M. Williams, I. Cassimjee, A. Handa, on Behalf of the Oxford Abdominal Aortic Aneurysm Study

Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

R. Lee et al EJVES 2017 Jun;53(6):820-829

Mode 1: prediction of AAA growth using physiological parameter

Bench mark Machine Learning techniques:

- Two input features (FMD, AAA diameter), .
- nonlinear support vector machine regression (SVR) with Kernel tricks •
- hyper-parameter optimisation with nested 5-fold cross-validations •
- Allowed 2mm margin of size prediction (accepted technical variation between U/S scans) ٠

Successful prediction of growth: At 12 months - 85%; at 24 months - 71%

Days from baseline

Days from baseline

EJVES Short Rep. 2018 May 1;39:24-28. doi: 10.1016/j.ejvssr.2018.03.004. eCollection 2018.

Applied Machine Learning for the Prediction of Growth of Abdominal Aortic Aneurysm in Humans.

Lee R¹, Jarchi D², Perera R³, Jones A¹, Cassimjee I¹, Handa A¹, Clifton DA³; Oxford Abdominal Aortic Aneurysm Study and; Oxford Regional Vascular Service.

AAA "complex" as the source of mediators for systemic biological manifestations

Hypothesis:

The aneurysm complex is the source of mediators that drives systemic biological effects in AAA patients

Integrated Plasma and Tissue Proteomics

Reveals Attractin Release by Intraluminal Thrombus of Abdominal Aortic Aneurysms

Experiment 1: plasma samples of fast vs slow growth patients

Experiment 2: plasma samples from same patient before vs after surgery

Experiment 3: Analysis of ILT protein content

Experiment 4: Analysis of ILT protein 'secretome'

We found 3 proteins that: (1) higher in patients with fast growing AAA, (2) reduced in systemic circulation after AAA repair, (3) highly abundant in AAA ILT, (4) released from ILT: Attractin, Complement C8, HSPAA5P

Technical validation of the LC-MS/MS data by ELISA

Al enables high throughput characterization of arterial morphology with or without contrast

A Deep Learning Pipeline to Automate High Resolution Arterial Segmentation with or without Intravenous Contrast

Chandrashekar, Anirudh BE^{*}; Handa, Ashok MBBS FRCS MA^{*}; Shivakumar, Natesh MBBS^{*}; Lapolla, Pierfrancesco^{*}; Uberoi, Raman BMSc MBBchir MRCP^{*}; Grau, Vicente PhD[†]; Lee, Regent MBBS MS(Vasc Surg) DPhil (Oxon) FRCS (Vasc Surg)^{*} Author Information ⁽

Anirudh Chandrashekar BE, DPhil

Fig 6: Maximum AAA Diameter profiles along planes orthogonal to AAA centerline. Profiles were generated from ground truth and model predictions of AAA volumes derived from contrastenhanced (A) and non-contrast (B) CT images. The perpendicular planes were used to generate the re-aligned or straightened views of AAA. Corresponding DICE scores, average Euclidean distance deviations between centerlines, RMSE and %-difference of diameter profiles are indicated.

Fig 7: Bland-Altman plots and correlation-coefficient analysis comparing the 1-D (Max AP Diameter of AAA - A), 2-D (Max axial area of AAA - B), and 3-D (Total volume of AAA - C) measurements from model predictions compared against those derived from GT. This analysis was limited to volumes extracted from non-contrast CT images. Spearman correlation coefficients (r_o) and p-values are indicated on the graphs.

Geometric features and AAA growth: radius of curvature and undulation index

Prediction of Abdominal Aortic Aneurysm Growth Using Geometric Assessment of Computerised Tomography Images Acquired During the Aneurysm Surveillance Period

Chandrashekar, Anirudh^{*,*}; Handa, Ashok^{*}; Lapolla, Pierfrancesco^{*}; Shivakumar, Natesh^{*}; Ngetich, Elisha^{*}; Grau, Vicente⁺; Lee, Regent^{*} Author Information ⊚

Annals of Surgery: December 29, 2020 - Volume Publish Ahead of Print - Issue doi: 10.1097/SLA.00000000004711

Chandrashekar A et al, Annals of Surgery, 2021

Radius of Curvature and Undulation Index are independent of demographic traits

ANNALS OF SURGERY ORIGINAL ARTICLE: PD

TABLE 1. Summary of Participant Demographics at the Pre-surgical Assessment and Significance of Spearman Correlation With **Extracted Geometric Parameters**

ORIGINAL ARTICLE: PDF ONLY			Significance of	of Spearman Correlation	n Coefficient
Prediction of Abdominal Aortic Aneurysm		All Participants $(n = 102)$	Diam.	UI	RC
Growth Using Geometric Assessment of	Male (%)	99 (97)	0.35	0.36	0.09
Computational Tomography Images Acquired	Age at consent (median/IQR)	72 (67–79)	0.12	0.83	0.70
Computerised Tomography Images Acquired	Height (±SD)	1.75 ± 0.08	0.07	0.45	0.06
During the Aneurysm Surveillance Period	Weight (Median/IQR)	81.9 (74-90.2)	0.17	0.15	0.07
Chandrashekar, Anirudh ^{*,a} ; Handa, Ashok [*] ; Lapolla, Pierfrancesco [*] ; Shivakumar, Natesh [*] ; Ngetich, Elisha [*] ; Grau, Vicente ⁺ ; Lee, Regent [*] Author Information Θ	BMI (Median/IQR)	26.8 (24.3-28.7)	0.61	0.35	0.18
	MAP $(\pm SD)$	102.2 ± 12.8	0.13	0.70	0.20
Annals of Surgery: December 29, 2020 - Volume Publish Ahead of Print - Issue - doi: 10.1097/5LA.000000000004711	Current smoker (%)	24 (24)	0.57	0.99	0.09
	Past smoking Hx (%)	68 (67)	0.97	0.48	0.59
	Never smoked (%)	13 (13)	0.65	0.34	0.44
	CAD Hx (%)	33 (32)	0.25	0.15	0.56
	Coronary intervention (%)	26 (25)	0.63	0.41	0.88
	PAOD History (%)	16 (16)	0.85	0.59	0.22
	Cerebral art. disease (%)	12 (12)	0.10	0.16	0.34
	HTN history (%)	74 (73)	0.53	0.77	1.00
	Hypercholesterolemia (%)	61 (60)	0.61	0.67	0.75
	Tot. cholesterol (median/IQR)	3.8 (3.2-4.6)	0.23	0.76	0.63
	HDL (median/IQR)	1.1 (0.9 - 1.3)	0.47	0.41	0.06
	LDL (median/IQR)	1.5 (0-2.5)	0.26	0.92	0.37
	TG (median/IQR)	1.2(0.8-1.6)	0.49	0.65	0.66
	Diabetes (%)	16 (16)	0.88	0.26	0.78
	HbA1C (median/IQR)	5.6 (5.4-5.9)	0.19	0.81	0.41
	Diabetes - oral/insulin (%)	12 (12)	0.19	0.22	0.17
	CKD - eGFR <60 (%)	28 (27)	0.15	1.00	0.96
	Creatinine (median/IQR)	86.5 (73.3-101.3)	0.19	0.07	0.74
	Beta-blockers (%)	32 (31)	0.68	0.30	0.49
	ACEI/ARB (%)	56 (55)	0.27	0.77	0.97
	Aspirin (%)	47 (46)	0.83	0.89	1.00
	Thienopyridine (%)	9 (9)	0.55	0.17	0.44
	Ticragrelor (%)	3 (3)	0.81	0.64	0.72
	Anticoagulant (%)	12 (12)	0.93	0.46	0.21
	CCBs (%)	43 (42)	0.13	0.64	0.34
	Diuretics (%)	22 (22)	0.47	0.38	0.58
	Gastro-restraint (%)	31 (30)	0.57	0.68	0.32
	Steroids (%)	7 (7)	0.36	0.97	0.15
	Statins (%)	74 (73)	0.57	0.76	0.24
	AAA Diam (Median/IQR)	63 (58-72.5)			
	UI (±SD)	0.23 ± 0.08			
	RC (Median/IQR)	35.9 (29.7-46.9)			

Participant demographics were collected at the pre-surgical assessment and were correlated against the extracted geometric parameters of AAA diameter, undulation index, and radius of curvature. Characteristics that follow a Gaussian/Normal Distribution are indicated with a +. For such variables, mean \pm SD are presented, and cohort differences are compared using a Student t-test. For variables that do not follow a Gaussian distribution, median and inter-quartile range (IQR) are presented and cohort differences are compared using a Mann-Whitney test.

ACEI indicates angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blocker; BMI, body mass index; CAD, coronary artery disease; CCB, calcium channel blockers; CKD, chronic kidney disease; HDL, high density lipoprotein; HTN, arterial hypertension; Hx, history of; IQR, Interquartile range; LDL, low density lipoprotein; MAP, mean arterial pressure; PAD, peripheral arterial occlusive disease; PAOD, peripheral arterial occlusive disease; RC, radius of curvature; SD, standard deviation; TG, triglyceride; UI, undulation index.

Diameter, UI and RC correlates with future AAA growth Independently observed in two cohorts

Oxford Cohort (n=192)

Mode 3: Prediction of AAA growth using Geometric Features on CT scans

Chandrashekar A et al, Annals of Surgery, 2021

Linear regression model, trained and optimised using 10 fold cross validation to predict AAA growth as a continuous variable

The optimised prediction model was tested in the independent **MAR3S cohort**

A.	Annual Growth Rate			Correlation	
conorts	Observed Predicted		р	(p)	
Train (OxAAA, n = 100)	3.9 ± 1.6 mm/yr	4.0 ± 1.0 mm/yr	0.41	0.59	
Validation (OxAAA, n = 92)	3.8 ± 1.7 mm/yr	3.9 ± 1.1 mm/yr	0.32	0.61	
Validation (SBU, n = 100)	3.8 ± 2.7 mm/yr	3.6 ± 1.4 mm/yr	0.34	0.60	

В.

Prediction of individual AAA growth is feasible

Seeking Collaborators for further validation studies

