Athero-occlusive disease and AAA growth

Jonathan Golledge

James Cook University and Townsville University Hospital

Conflict of interest: The TEDY trial was supported by funding from the NHMRC, RACS, BUPA and Queensland Government.

The US arm was supported by a grant from Medtronic to RLD

Athero-occlusive disease and AAA growth: An exploratory analysis of the TEDY trial

Evan Matthews

Joe Moxon

Tejas Singh

Shiv Thanigaimani

Robert Fitridge

Jan Lindeman

Ron Dalman

Christian Gasser

Rhondda Jones

Atherosclerosis and AAA pathogenesis

Patients with CHD or PAD have high AAA prevalence (ORs in SRs 2-3)

Not all AAA patients have marked athero-occlusive disease

Methods

Hypothesis: AOD associated with faster AAA growth

Design: Include patients in TEDY with CT imaging follow-up

Outcomes: Centrally read CT Volume and orthogonal diameter

AOD definition: Prior diagnosis of PAD, CHD, stroke or ABI <0.9

Data analysis: Multivariable linear mixed effects analyses adjusted for risk factors and medication unequally distributed (p<.10 in bivariate comparisons)

Participants in relation to AOD diagnosis

	AOD (n=70)	No AOD (n=61)	P-value
Diameter (mm)	43.0 (39.0-47.0)	42.0 (39.0-46.0)	0.603
Volume (cm³)	78.5 (58.0-99.0)	75.0 (66.0-90.0)	0.798
Age	75.0 (69.3-81.8)	74.0 (68.0-77.0)	0.056
Male gender	60 (85.7%)	55 (90.2%)	0.611
Current smoking	15 (21.4%)	15 (24.6%)	0.911
Diabetes	11 (15.7%)	5 (8.1%)	0.297
Statins	56 (80%)	26 (42.6%)	<0.001
Any antiplatelet	58 (82.9%)	21 (34.4%)	<0.001
Metformin	8 (11.4%)	2 (3.3%)	0.104

Main outcome AAA growth AOD vs No AOD

AOD (n=70) No AOD (n=61) MD (95% CI) P value

 Volume (cm³)
 12.5 (9.2, 15.8)
 18.9 (15.4, 22.5)
 -3.26 (-5.70, -0.82), 0.009*

 -3.34 (-5.96, -0.71), 0.013**

 Diameter (mm)
 3.1 (2.5, 3.8)
 4.6 (3.8, 5.3)
 -0.71 (-1.22, -0.19), 0.007*

 -0.82 (-1.35, -0.29), 0.007**

*Adjusted for hypertension, statins and antiplatelet medications; # excluding participants with diabetes

Summary analysis suggests PAD associated with slower AAA growth

Reference	Standard mean difference*	Weight (%)	Standard mean difference†	Standard mean difference†
Behr-Rasmussen et al. ²⁰	-0.279(0.010)	11.3	-0.28 (-0.47, -0.08)	
Bhak et al. ²¹	-0.048(0.123)	10.0	-0.05 (-0.29, 0.19)	
De Haro et al.22	-0.123(0.151)	8.5	-0.12 (-0.42, 0.17)	
Ferguson et al.23	-0.023(0.122)	10.0	-0.02 (-0.26, 0.22)	
Fujimura et al. ²⁴	-0.116(0.504)	1.6	-0.12 (-1.10, 0.87)	
Lindholt et al.25	-0.198(0.177)	7.3	-0.20 (-0.54, 0.15)	
Miyata et al.8	0.781(0.384)	2.5	0.78 (0.03, 1.53)	· · · · · · · · · · · · · · · · · · ·
Parr et al. ²⁶	-0.664(0.381)	2.6	-0.66 (-1.41, 0.08)	
Periard et al.27	-0.526(0.211)	6.0	-0.53 (-0.94, -0.11)	
Ruegg et al.28	0.381(0.215)	5.9	0.38 (-0.04, 0.80)	
Schlösser et al.29	-0.019(0.181)	7.2	-0.02 (-0.37, 0.34)	
Schouten et al.30	-0.374(0.217)	5.8	-0.37 (-0.80, 0.05)	
Sterpettii et al.31	-0.755(0.276)	4.2	-0.76 (-1.30, -0.21)	
Vega de Ceniga et al. ¹⁰ Overall cohort	-0.126(0.107)	10.9	-0.13 (-0.34, 0.08)	
Vega de Ceniga et al.32	-0.102(0.208)	6.1	0.10 (-0.31, 0.51)	· · · · · ·
Total		100.0	-0.13 (-0.27, -0.00)	•
Heterogeneity: $\tau^2 = 0.03$; $\chi^2 = 28.39$, 14				
Test for overall effect: $Z = 2.01$, $P = 0.04$	-1 -0.5 0 0.5 1			
1999년 1997년 199 1997년 1997년 1997				Favours PAD Favours no PAD

QRCPVD Queensland Research Centre for Peripheral Vascular Disease

Matthews E, et al. Br J Surg 2017;104(13):1765-74.

Sensitivity analyses 1: Could AOD be confounded by more intensive medical management?

- Statin prescription, LDL-C and antiplatelet medication not significantly associated with AAA growth
- AOD associated with slower AAA growth after adjusting for these factors and no significant interaction in LME models

Sensitivity analyses 2: Could diabetes explain the AOD association?

- Diabetes was associated with significantly slower AAA growth but AOD associated with significantly slower AAA growth after adjusting for diabetes (no significant interaction)
- AOD associated with significantly slower AAA growth after excluding participants with diabetes

Sensitivity analyses 3: Could biomechanical factors explain the AOD association?

	AOD (n=70)	No AOD (n=61)	P-value
PWS (kPa)	157.2 (143.0-184.1)	166.9 (146.6-185.8)	0.253
PWRI	0.37 (0.31-0.41)	0.39 (0.36-0.77)	0.447

High wall stress

Conclusions

- Why AOD associated with slower AAA growth?
 - Surrogate for better medical management beyond adjustment?
 - Different aneurysm phenotype with different etiologies?
- Limitations: Small sample size and exploratory analysis

