

70TH ESCVS CONGRESS & 7TH IMAD MEETING

20 I 23 JUNE 2022

Dekker Senior Clinical Scientist Fellow 2019T065

The Role of Smooth Muscle Cells in Aortic Aneurysms

Associate Prof. Dr. Kak Khee Yeung, MD, PhD, FEBVS Vascular Surgeon and Principal investigator Translational Vascular Surgery Amsterdam Cardiovascular Sciences Department of Surgery, Amsterdam UMC, the Netherlands

Disclosures

- Dutch Heart Foundation
- Unrestricted grant of W.L. Gore & Associates
- Patients: AMC Foundation and Stichting VUmc

Problem

- Still not able to predict Rupture or Growth rates of Aneurysms and Dissections
- Endovascular repair \rightarrow 30% reintervention rates \rightarrow AAA progression
- Are we able to select high risk patients for treatment?
- Personalised treatment
- Do we get to a medical treatment?

New insights from cell specific analysis

Vascular Smooth Muscle Cells (SMC)

The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections

WILEY

Inflammatory cell infiltration

Macrophage

MCP-1

MCP-1

Ischemic injury

Oxidative stress

Mechanical wall stress

ER stress

vSMC detachement from ECM

Genetic mutations involving SMC

• Mutations in genes of the mechano-transduction complex: smooth muscle cells + environment

20% Familial thoracic aneurysms

Hypothesis

SMC isolation from AAA biopsies

EXCLUSIVE Biobank imagebank databank national: PAREL AAA (>700)

AAA open repair surgery

Aortic biopsy

Finding the right layer

Cutting into pieces

LIVE Biobank:

- Blood
- Tissue
- Urine

- Perivascular fat
- Fibroblasts isolation from the skin
- Thrombus

Insights in the pathophysiology of AAA can contribute to finding new targets to develop new non-invasive treatment options

Measuring SMC contraction using ECIS

DVE 2022

Isolation of Primary Patient-specific Aortic Smooth Muscle Cells and Semiquantitative Real-time Contraction Measurements *In Vitro*

Natalija Bogunovic^{*,1,2,3}, Karlijn B. Rombouts^{*,1,2}, Kak Khee Yeung^{1,2}

¹ Department of Vascular Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam ² Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam ³ Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center *These authors contributed equally

Electric Cell-substrate Impedance Sensing (ECIS) measures impedance value based on electrode coverage

ECIS cell culture plate

Well with electrodes

SMC covering electrodes

Figure from Bogunovic et al., 2019

Methods – Stimulation with ionomycin

Measuring SMC contraction using ECIS

Ionomycin stimulus (Ca²⁺ ionophore inducing influx of Ca²⁺) \rightarrow SMC contraction \rightarrow Drop in impedance value

SMC contraction dysfunction

Ca²

Calcium channel

AAA-SMC subdivided based on contraction and gene expression correlated to SMC contraction

MYLK expression subdivided based on SMC contraction

AAA patients

1

Phosphoproteomics screen to explain differences in SMC contraction

 We aim to identify proteins and pathway differences between AAA-SMC and c-SMC and proteins and pathways involved in altered SMC contraction

Also in non-familial AAA vSMC differences were found, for example FBN-1

ECM production problem?

Project 2: SMC + EC 3D model

co-culture

Smooth muscle cells

Endothelial cells

Experimental Investigation

Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms

Our construct

I-10 The Author(s) 2021 The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/15266028211009272 www.jevt.org SAGE

Natalija Bogunovic, PhD^{1,2,3}, Jorn P. Meekel, MD^{1,2}, Jisca Majolée, MSc², Marije Hekhuis, BSc³, Jakob Pyszkowski, MSc⁴, Stefan Jockenhövel, PhD^{5,6}, Magnus Kruse, PhD^{6,7}, Elise Riesebos, MSc³, Dimitra Micha, PhD³, Jan D. Blankensteijn, MD, PhD¹, Peter L. Hordijk, PhD², Samaneh Ghazanfari, PhD^{5,6*}, and Kak K. Yeung, MD, PhD^{1,2*} Scaffold: biodegradable PLGA +micropatterns to direct cell growth

Study the SMC and ECM in 3D

SMC from: AAA patients Healthy controls

EC from: Healthy controls

Cell growth degrades the scaffold, leading to the production of an original extracellular matrix

BIO-ENGINEERED VESSEL: ANISOTROPY a parameter of order in the system

Scaffold - 5 weeks

Extracellular matrix production -FBN1 CONTROL

DAPI FBN1 F-actin

PATIENT

Extracellular matrix production -COL3 CONTROL

DAPI COL3 F-actin

PATIENT

Insights in the pathophysiology of AAA can contribute to finding new targets to develop new non-invasive treatment options

Special thanks to Vascular surgery SMC team

- PhD-students:
 - Karlijn Rombouts
 - Tara Merrienboer
 - Maarten Graumans
 - Lan Tran
- Postdocs:
 - Natalija Bogunovic
 - Menno Groeneveld
- Technician: Albert van Wijk
- Department of Surgery:
 - Prof. Dr. Jan Blankensteijn
 - Vascular surgeons AUMC
- Department of Physiology:
 - Prof. Dr. Jolanda van der Velden
 - Dr. Ed Eringa

E-mail: K.yeung@amsterdamumc.nl

