**C** Helios



# Parallel Murine and Human Aortic Wall Genomics Reveals Metabolic Reprogramming as Key Driver of Abdominal Aortic Aneurysm Progression

Gabor Gäbel<sup>1</sup>, MD; Bernd H. Northoff<sup>2</sup>, MSc; Amanda Balboa<sup>3</sup>, MSc; Mediha Becirovic-Agic<sup>3</sup>, PhD; Marcelo Petri,<sup>3</sup> PhD; Albert Busch<sup>4</sup>, MD; Lars Maegdefessel<sup>4</sup>, MD; Adrian Mahlmann<sup>5</sup>, MD; Stefan Ludwig<sup>5</sup>, MD; Daniel Teupser<sup>2</sup>, MD; Vivian de Waard<sup>6</sup>, PhD; Jonathan Golledge<sup>7</sup>, MD.; Anders Wanhainen<sup>8</sup>, MD, PhD; Dick Wågsäter<sup>3</sup>, PhD; Lesca Miriam Holdt<sup>2</sup>, MD; Jan H.N. Lindeman<sup>9</sup>, MD, PhD

- <sup>1</sup> Department of Vascular Surgery, HELIOS Klinikum Krefeld, Germany
- <sup>2</sup> Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- <sup>3</sup> Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- <sup>4</sup> Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- <sup>5</sup> University Centre for Vascular Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- <sup>6</sup> Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Dept. Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands.
- <sup>7</sup> Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia

#### <sup>8</sup> Department of Surgical Sciences, Section of Vascular Surgery, Uppsala University, Uppsala, Sweden.

<sup>9</sup> Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands

#### **Conficts of Interest**

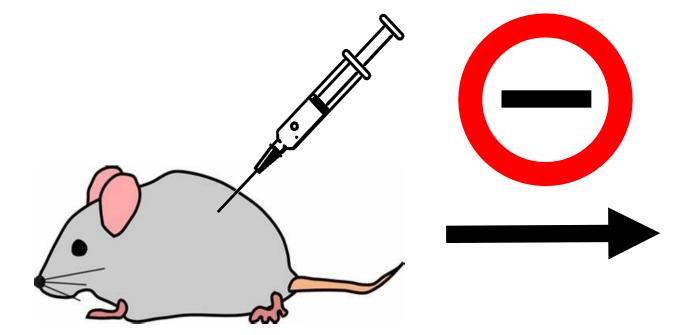


#### **Disclosures:**

None

#### Sources of Funding:

Dr. Gäbel received funding from the German Society for Vascular Surgery ("Aortenstipendium").


Dr. Wagsater received grants from the Swedish Research Council (grant no. 2019-01673)

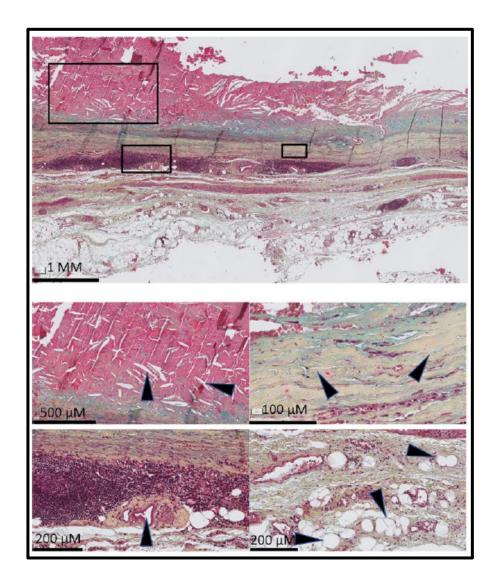
and Swedish Heart and Lung Foundation (grant no. 20190556).

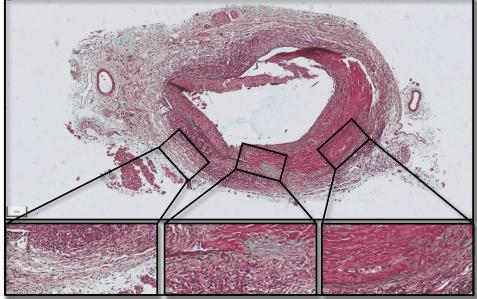
Dr. Golledge received funding from the Queensland Government, National Health and Medical Research Council (IDs 1020955, 1021416, 1063476 and 1000967) and Townsville Hospital Private Practice Trust for this work.

Dr. Teupser and Dr. Holdt received funding from the Deutsche Forschungsgemeinschaft as part of the CRC 1123 (B1, B5) and the CRC 267 (A07, B04).

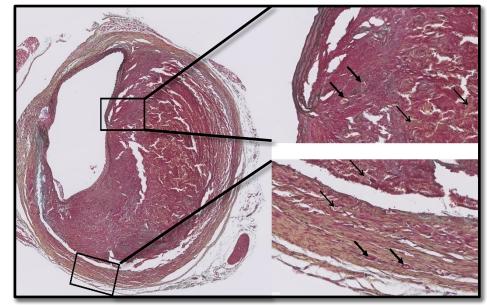
#### **From Mice and Men**



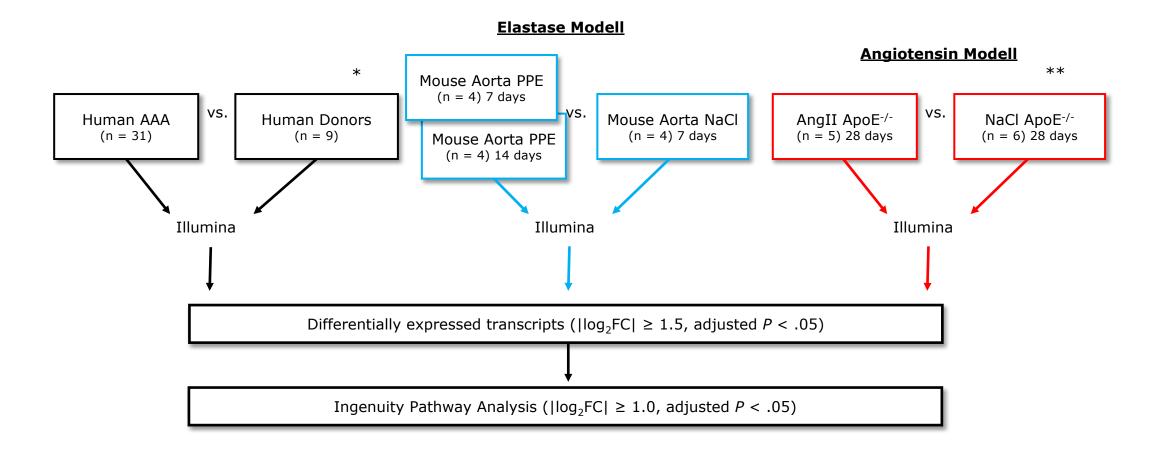

| Targeted Cluster        | Strategy                                                       |  |
|-------------------------|----------------------------------------------------------------|--|
| Anti-inflammatory       | $NF\kappa B,^{46}$ AP-1, $^{47}$ Rho kinase $^{48}$ inhibition |  |
|                         | IL1,49 TNFa,50 CCL-151                                         |  |
|                         | B cell, $^{52}$ $\gamma\delta T\text{-cell}^{53}$ depletion    |  |
|                         | Neutrophil inhibition54                                        |  |
|                         | Mast cell inhibition <sup>55</sup>                             |  |
|                         | Complement inhibition56,57                                     |  |
|                         | Oxilipin inhibition58,59                                       |  |
|                         | Immune suppression60,61                                        |  |
| Protease inhibition     | MMP inhibition <sup>62,63</sup>                                |  |
|                         | Cysteine protease inhibition <sup>64,65</sup>                  |  |
|                         | Serine protease inhibition66,67                                |  |
| Oxidative stress        | Antioxidant enzymes68,69                                       |  |
|                         | Secondary antioxidants <sup>70,71</sup>                        |  |
| Blood pressure lowering | β-Blockers <sup>72</sup>                                       |  |
|                         | Ca antagonists <sup>73</sup>                                   |  |
|                         | ACE inhibitors74,75                                            |  |
|                         | ATR1 antagonists <sup>76</sup>                                 |  |
|                         | iNOS inhibition77                                              |  |
| Lipid metabolism        | Statins <sup>78,79</sup>                                       |  |
|                         | HDL <sup>80</sup>                                              |  |
|                         | RXR and PPARα/γ activation <sup>81,82</sup>                    |  |
| Cell therapy            | Mesenchymal stem cells <sup>83,84</sup>                        |  |
|                         | Fibroblasts <sup>85</sup>                                      |  |
| Matrix/morphogens       | Interference with TGF $\beta$ signaling <sup>86</sup>          |  |
|                         | Interference with NOTCH87/Wnt88 signaling                      |  |
|                         | Thrombospontin inhibition89                                    |  |
|                         | EGFR inhibition <sup>90</sup>                                  |  |
| Metabolism              | Inhibition of HIF1 $\alpha^{_{91}}$                            |  |
|                         | Activation of AMPK <sup>92</sup>                               |  |
| Nutriceuticals          | Polyphenols93                                                  |  |
|                         | Phytoestrogens <sup>94</sup>                                   |  |
| Sex hormones            | Castration <sup>96</sup>                                       |  |
|                         | Estrogens <sup>96</sup>                                        |  |


# Why is there a translational gap?

Where are differences and parallels between mice and men?

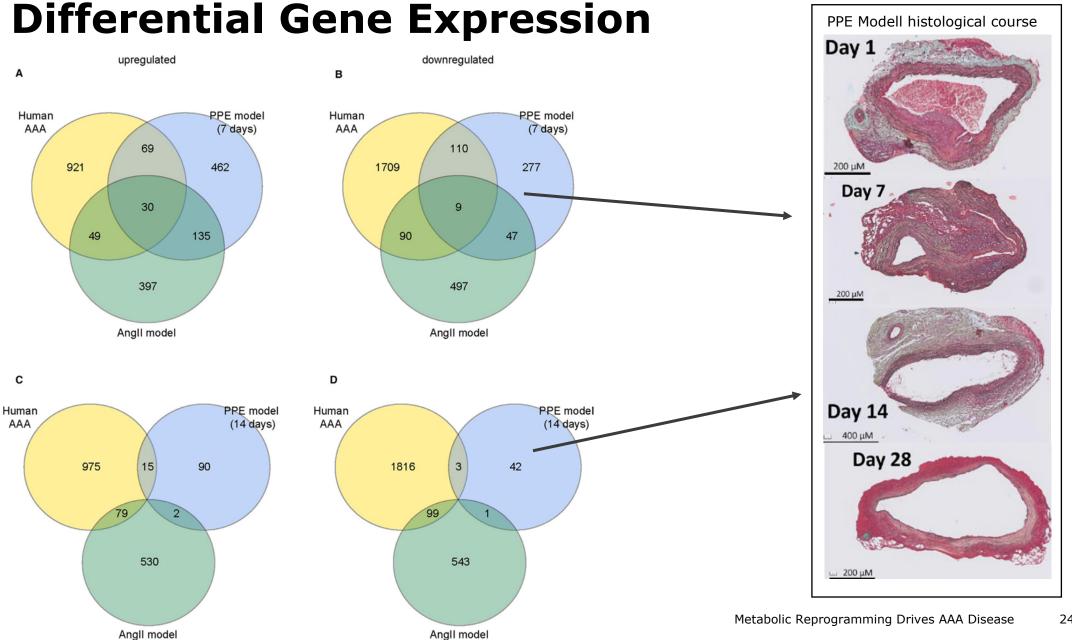

#### Elastase Modell

## **Histologic Changes**



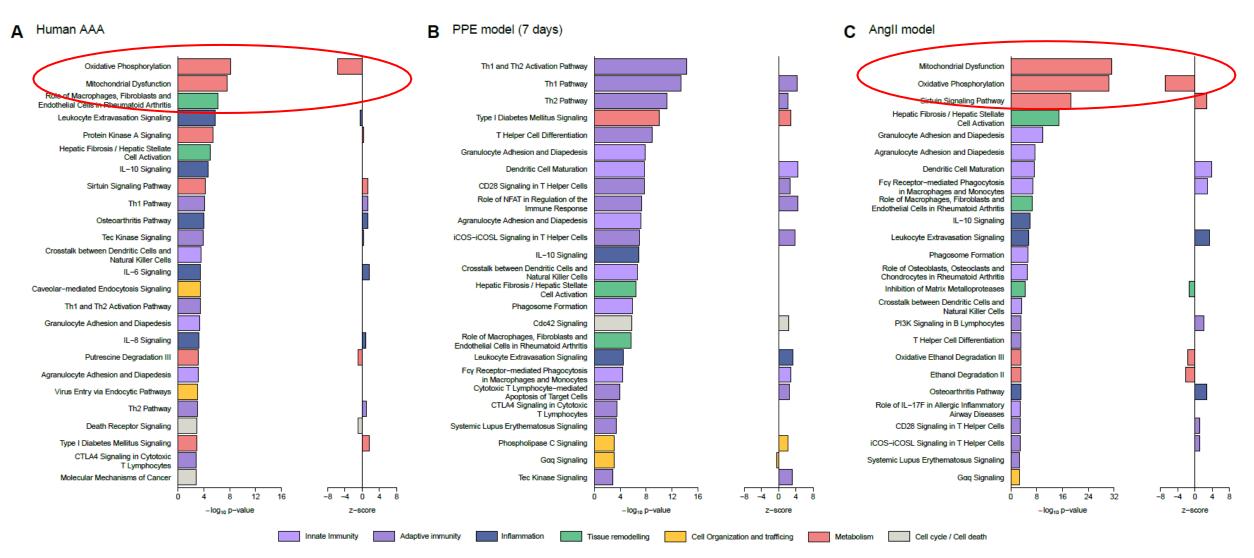



Angiotensin Modell




## **Experimental setup**

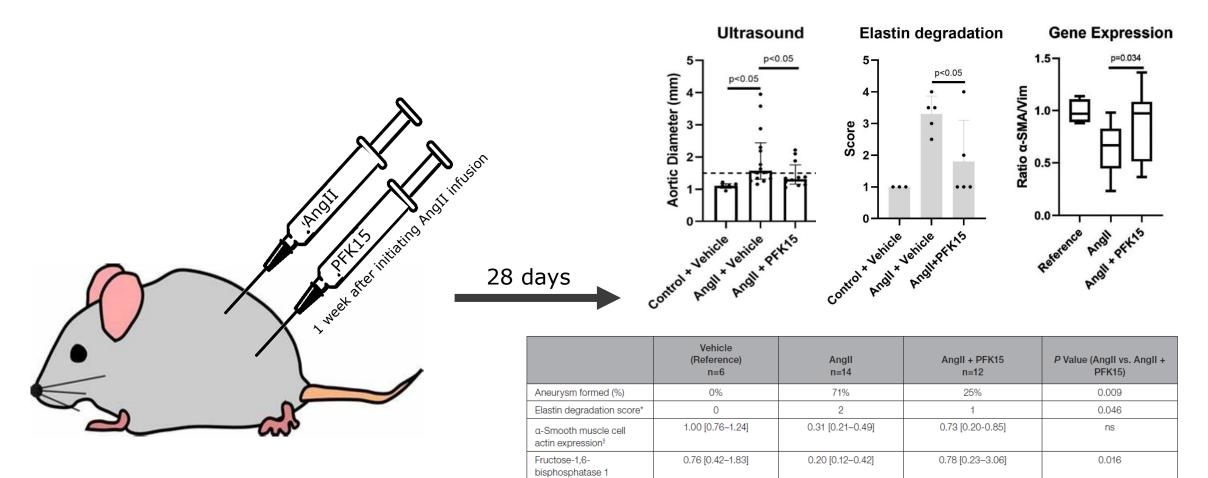



\*GEO accession GSE98278

\*\*GEO accession GSE12591



24.06.2022 7


## **Ingenuity Pathway Analysis**



# **Metabolic Reprogramming**

Does it have any influence?

#### **Mouse Modell** – Rescue Treatment with Glycolysis Inhibitor



expression<sup>†</sup>

day 0 (g)

Change in body weight vs.

Blood glucose (mmol/L)

+1.0 [0.00-2.00]

8.0 [6.40-9.10]

+0.1 [-0.50 to 1.00]

5.4 [4.80-5.90]

0.008

0.021

+1.5 [1.00-2.00]

6.8 [5.65-7.90]

## Conclusion

- Histomorphologic experimental AAA models are distinct from clinical AAA disease
  - AngII intramural hematoma (dissection model)
  - PPE aneurysm formation limited to first 2 weeks
- Genomic response with clear overlaps
  - AngII metabolic reprogramming (glycolytic shift)
  - PPE adaptive immunity (at day 7)
  - PPE model mimics initiating stages of disease and AngII model late-stage AAA
- PFKFB3 intervention trial suggests that glycolytic switch drives AAA progression
  - Rationale for beneficial effects of metformin therapy
  - Explaination for negative association between diabetes and AAA progression



# Thank You



Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis Leukocyte Extravasation Signaling

Crosstalk between Dendritic Cells and

Granulocyte Adhesion and Diapedesis

Agranulocyte Adhesion and Diapedesis

Type I Diabetes Mellitus Signaling

PI3K Signaling in B Lymphocytes Fcy Receptor-mediated Phagocytosis in Macrophages and Monocytes Systemic Lupus Ervthematosus Signaling

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis Role of NFAT in Regulation of the Immune Response

iCOS-iCOSL Signaling in T Helper Cells

Dendritic Cell Maturation Primary Immunodeficiency Signaling

Axonal Guidance Signaling

Macropinocytosis Signaling Ethanol Degradation IV

Ethanol Degradation II

TWEAK Signaling

Oxidative Ethanol Degradation III

3-phosphoinositide Biosynthesis Colorectal Cancer Metastasis Signaling CD28 Signaling in T Helper Cells

STAT3 Pathway Goq Signaling Phagosome Formation Superpathway of Inositol Phosphate Compounds Inhibition of Matrix Metalloproteases T Helper Cell Differentiation

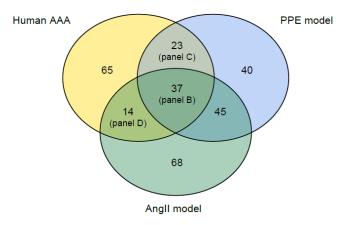
Th1 and Th2 Activation Pathway

Protein Kinase A Signaling Hepatic Fibrosis / Hepatic Stellate

Cell Activation IL-10 Signaling Th1 Pathway

Natural Killer Cells IL-6 Signaling

IL-8 Signaling


Th2 Pathway



13

# **Ingenuity Pathway Analysis**

Overlapping cannonical pathways



#### Pathways pertubated in human AAA and AngII model

| Oxidative Phosphorylation               | Human          |                            |         |
|-----------------------------------------|----------------|----------------------------|---------|
| Oxidative Phosphorylation               | Angli          |                            |         |
| Mitochondrial Dysfunction               | Human          |                            |         |
| Millochonanar Dystancion                | Angli          |                            |         |
| Sirtuin Signaling Pathway               | Human          |                            |         |
| on tail originaling Faannay             | Angli          |                            |         |
| Osteoarthritis Pathway                  | Human          |                            |         |
| ,                                       | Angli          |                            |         |
| Prostanoid Biosynthesis                 | Human          |                            |         |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Angli          |                            |         |
| PPAR Signaling                          | Human          |                            | _       |
| 5 5                                     | Angli<br>Human |                            |         |
| Inhibition of Angiogenesis by TSP1      | Angli          |                            | -       |
| Tumoricidal Function of                 | Human          |                            |         |
| Hepatic Natural Killer Cells            | Angli          |                            |         |
|                                         | Human          |                            |         |
| TNFR1 Signaling                         | Angli          |                            |         |
|                                         | Human          | ·                          |         |
| D-myo-inositol-5-phosphate Metabolism   | Angli          |                            | 1       |
| Role of IL-17F in Allergic Inflammatory | Human          |                            |         |
| Airway Diseases                         | Angli          |                            |         |
|                                         | Human          |                            |         |
| Aryl Hydrocarbon Receptor Signaling     | Angli          |                            |         |
| Nitric Oxide Signaling in the           | Human          |                            |         |
| Cardiovascular System                   | Angli          |                            |         |
| HMGB1 Signaling                         | Human          |                            |         |
| Filviob Foighailing                     | Angli          |                            |         |
|                                         |                | 0 8 16 24 32               | -8-404  |
|                                         |                | 0 0 10 24 32               | -0-404  |
|                                         |                | -log <sub>10</sub> p-value | z-score |
|                                         |                |                            |         |

Pathways pertubated in human AAA and PPE model

|                                                              | Human                     |                     |
|--------------------------------------------------------------|---------------------------|---------------------|
| Tec Kinase Signaling                                         | PPE                       |                     |
| Caveolar-mediated Endocytosis Signaling                      | Human<br>PPE              |                     |
| Putrescine Degradation III                                   | Human<br>PPE              |                     |
| Virus Entry via Endocytic Pathways                           | Human PPE                 |                     |
| Death Receptor Signaling                                     | Human<br>PPE              |                     |
| CTLA4 Signaling in Cytotoxic<br>T Lymphocytes                | Human<br>PPE              |                     |
| Molecular Mechanisms of Cancer                               | Human<br>PPE              |                     |
| Integrin Signaling                                           | Human PPE                 |                     |
| Noradrenaline and Adrenaline Degradation                     | Human<br>PPE              |                     |
| Phospholipase C Signaling                                    | Human PPE                 |                     |
| Tryptophan Degradation X<br>(Mammalian, via Tryptamine)      | Human<br>PPE              |                     |
| Gap Junction Signaling                                       | Human<br>PPE              |                     |
| Relaxin Signaling                                            | Human<br>PPE              |                     |
| Cytotoxic T Lymphocyte-mediated<br>Apoptosis of Target Cells | Human<br>PPE              |                     |
| Cdc42 Signaling                                              | Human<br>PPE              |                     |
| Signaling by Rho Family GTPases                              | Human PPE                 |                     |
| CXCR4 Signaling                                              | Human<br>PPE              |                     |
| Regulation of Actin-based Motility by Rho                    | Human<br>PPE<br>Human     |                     |
| Mechanisms of Viral Exit from Host Cells                     | PPE<br>Human              |                     |
| RAR Activation                                               | PPE<br>Human              |                     |
| Vitamin-C Transport                                          | PPE                       |                     |
| Erythropoietin Signaling                                     | PPE                       |                     |
| fMLP Signaling in Neutrophils                                | PPE                       |                     |
|                                                              | 0 4                       | 8 -8 -4 0 4 8       |
|                                                              | −log <sub>10</sub> p−va   | alue z-score        |
|                                                              |                           |                     |
|                                                              |                           |                     |
|                                                              |                           | _                   |
| Innate Immunity                                              | Adaptive immunity         | Inflammation        |
| Tissue remodelling                                           | Cell Organization and tra | afficing Metabolism |
| Cell cycle / Cell death                                      |                           |                     |

Regulation of Actin-bas Mechanisms of Viral Ei Vit Erythr fMLP Signa