

Liège I Théâtre de Liège I Belgium www.escvs2022.com

Clinical effect of accessory renal artery coverage after endovascular repair of aneurysms in abdominal and thoracoabdominal aorta

Athanasios D. Giannoukas

MD, MSc(Lond.), PhD (Lond.), FEBVS Head, Department of Vascular Surgery, Larissa University Hospital, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece

Disclosure

Speaker name: Prof. Athanasios Giannoukas

□ I have the following potential conflicts of interest to report:

□ Receipt of grants/research support

□ Receipt of honoraria and travel support

Participation in a company-sponsored speaker bureau

Employment in industry

□ Shareholder in a healthcare company

Owner of a healthcare company

I do not have any potential conflict of interest

AAA anatomical characteristics

TAAA anatomical characteristics

Eleshra A et al. J Endovasc Ther. 2020 Apr;27(2)

ARA variations

Standring S, ed. *Gray's Anatomy* . 40th ed. London: Elsevier; 2009

Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms

J.C. Parodi, MD*, J.C. Palmaz, MD⁺, H.D. Barone, PhD, Buenos Aires, Argentina, and San Antonio, Texas

Should patients with challenging anatomy be offered endovascular aneurysm repair?

Roy K. Greenberg, MD,^{a,b} Daniel Clair, MD,^a Sunita Srivastava, MD,^a Guru Bhandari, MS,^a Adrian Turc, MD,^a Jennifer Hampton, RN,^a Matt Popa, BS,^a Richard Green, MD,^a and Kenneth Ouriel, MD,^a *Cleveland, Obio; and Rochester, NY* **Technical Note**

Fenestrated Stent-Grafts for Preserving Visceral Arterial Branches in the Treatment of Abdominal Aortic Aneurysms: Preliminary Experience¹ has Huung Bark, M

Jae Hyung Park, MD Jin Wook Chung, MD In Wook Choo, MD Sang Joon Kim, MD Jae Young Lee, MD Man Chung Han, MD

Several interventions developed to spare ARAs, including fenestrated or chimney endografts

European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms

Anders Wanhainen ^{a,†,*}, Fabio Verzini ^{a,†}, Isabelle Van Herzeele ^a, Eric Allaire ^a, Matthew Bown ^a, Tina Cohnert ^a, Florian Dick ^a, Joost van Herwaarden ^a, Christos Karkos ^a, Mark Koelemay ^a, Tilo Kölbel ^a, Ian Loftus ^a, Kevin Mani ^a, Germano Melissano ^a, Janet Powell ^a, Zoltán Szeberin ^a

ESVS Guidelines Committee^b, Gert J. de Borst, Nabil Chakfe, Sebastian Debus, Rob Hinchliffe, Stavros Kakkos, Igor Koncar, Philippe Kolh, Jes Lindholdt, Melina de Vega, Frank Vermassen

Document reviewers ^c, Martin Björck, Stephen Cheng, Ronald Dalman, Lazar Davidovic, Konstantinos Donas, Jonothan Earnshaw, Hans-Henning Eckstein, Jonathan Golledge, Stephan Haulon, Tara Mastracci, Ross Naylor, Jean-Baptiste Ricco, Hence Verhagen

Guidelines for the management of ARA

Recommendation 56	Class	Level	References
Preservation of large accessory renal arteries (>3 mm) or	llb	С	[379]
those that supply a significant portion of the kidney ($>1/3$)			
may be considered in endovascular aneurysm repair.			

SOCIETY FOR VASCULAR SURGERY® DOCUMENT

The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm

Elliot L. Chaikof, MD, PhD,^a Ronald L. Dalman, MD,^b Mark K. Eskandari, MD,^c Benjamin M. Jackson, MD,^d W. Anthony Lee, MD,^e M. Ashraf Mansour, MD,^f Tara M. Mastracci, MD,^g Matthew Mell, MD,^b M. Hassan Murad, MD, MPH,^h Louis L. Nguyen, MD, MBA, MPH,^l Gustavo S. Oderich, MD,^l Madhukar S. Patel, MD, MBA, ScM,^{a,k} Marc L. Schermerhorn, MD, MPH,^a and Benjamin W. Starnes, MD,^l Boston, Mass; Palo Alto, Calif; Chicago, III; Philadelphia, Pa; Boca Raton, Fla; Grand Rapids, Mich; London, United Kingdom; Rochester, Minn; and Seattle, Wash

We suggest preservation of accessory renal arteries at the time of EVAR or OSR if the artery is 3 mm or larger in diameter or supplies more than one-third of the renal parenchyma.

Level of recommendation	2 (Weak)
Quality of evidence	C (Low)

REVIEW ARTICLE | VOLUME 74, ISSUE 6, P2104-2113.E7, DECEMBER 01, 2021

Clinical effect of accessory renal artery coverage after endovascular repair of aneurysms in abdominal and thoracoabdominal aorta

Konstantinos Spanos, MD, MSc, PhD 🔗 🖾 🖉

Petroula Nana, MD •

Alexandros G. Brotis, MD, MSc, PhD ...

Tilo Kölbel, MD. PhD •

Miltiadis Matsagkas, MD, PhD, FEBVS •

Athanasios Giannoukas, MD, MSc, PhD, FEBVS •

Show all authors

Published: June 28, 2021 •

DOI: https://doi.org/10.1016/j.jvs.2021.06.032 •

Systematic review and meta-analysis to assess the impact of ARA <4mm coverage on renal function in terms of

Acute kidney injury

Renal infarcts

Chronic renal failure

Mortality

In patients undergoing standard EVAR or endovascular repair of complex aneurysms

Study details and characteristics

- 1014 patients included
- 302 ARA coverage vs
- 712 preservation or no ARA
- ARA diameter 2.7 3.4

Investigator	Journal	Year	Study period	Study type	Study group/ matching	Patients, No.	Group 1, No.	Group 2, No.	ARA diameter mm
EVAR									\wedge
Kim et al ²⁷	Ann Vasc Surg	2004	1996-2001	Retrospective	ARA coverage vs preservation	33	21	12	NR
Karmacharya et al ²⁸	JVS	2006	1998-2003	Retrospective	ARA coverage vs patients without ARA	61	35	26	NR
Greenberg et al ¹⁸	JVS	2012	2004-2010	Retrospective	ARA coverage vs preservation	69	40	29	2.95 vs 2.93
Malgor et al ¹⁹	JVS	2013	1998-2009	Retrospective	ARA coverage vs no ARA (1:1)	84	42	42	NR
Sadeghi- Azandaryani et al ⁷	JVS	2017	5 Years	Retrospective	ARA coverage vs no ARA (1:3)	145	43	102	3
Maurer et al ²⁰	Cardiovasc Intervent Radiol	2019	2003-2013	Retrospective	ARA coverage vs preservation	65	19	46	NR
Salomon du Mont et al ²⁴	Ann Vasc Surg	2020	2008-2016	Retrospective	ARA coverage vs no ARA or ARA preservation	184	25	159	2.7
Complex aneurysm repair									
Lareyre et al ²²	J Vasc Interv Radiol	2019	2013-2017	Retrospective	ARA coverage vs preservation	76	11	65	3.3
Lareyre et al ¹²	Ann Vasc Surg	2019	2010-2017	Retrospective	ARA coverage vs no ARA	43	10	33	3.4
Tenorio et al ²¹	JVS	2020	2013-2018	Retrospective	ARA coverage vs preservation and no ARA	254	56	198	2.7 vs 3.4
Total	NA	NA	NA	NA	NA	1014	302	712	NA

Preoperative status, contrast volume and renal function classification

	Intraoper		Preoperative		Renal function classification, No.								
	contrast volume, mL		eGFR, mL/min/ 1.73 m ²		Stage 1	Stage 2	Stage 3	Stage 4	Stage 1	Stage 2	Stage 3	Stage 4	
Variable	Gl	G2	Gl	G2	Gl	G1	G1	G1	G2	G2	G2	G2	
EVAR													
Kim et al ²⁷	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Karmacharya et al ²⁸	NR	NR	67	79	NR	NR	NR	NR	NR	NR	NR	NR	
Greenberg et al ¹⁸	109.7	113.6	NR	NR	NR	NR	8	NR	NR	NR	NR	NR	
Malgor et al ¹⁹	NR	NR	68	67	5	17	18	NR	5	17	18	NR	
Sadeghi- Azandaryani et al ⁷	145	135	74	72	9	20	5	0	22	62	18	0	
Maurer et al ²⁰	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Salomon du Mont et al ²⁴	NR	NR	68.9	72.5	2	13	8	NR	31	88	40	0	
Complex aneurysm repair													
Lareyre et al ²²	141	131.5	53	63.3	NR	NR	NR	NR	NR	NR	NR	NR	
Lareyre et al ¹²	197	135	76	71	NR	NR	NR	NR	NR	NR	NR	NR	
Tenorio et al ²¹	154	152	65	64	6	28	21	1	20	93	82	3	

Meta-analysis of AKI incidence between groups 1 and 2 for standard EVAR and complex endovascular aneurysm repair

Early period

In the standard EVAR subgroup, the **risk of AKI** was similar between the two groups (OR, 0.72; 95% CI, 0.21-2.51; $l_2=0\%$) In the complex aneurysm repair subgroup, the **risk of AKI** was also similar between groups 1 and 2 (OR, 1.85; 95% CI, 0.61-5.64; $l_2=42\%$)

Study or	Experim	nental	Co	ontrol	Weight	Weight	Odds Ratio	Odds Ratio
Subgroup	Events	Total	Events	Total	(fixed)	(random)	MH, Fixed + Random, 95% CI	MH, Fixed + Random, 95% CI
Type = Standard								
Malgor	2	42	3	42	18.4%	15.5%	0.65 [0.10; 4.10]	
Maurer	2	19	6	46	20.2%	17.7%	0.78 [0.14; 4.28]	
Total (fixed effect, 95% CI)		61		88	38.6%		0.72 [0.21; 2.52]	
Total (random effects, 95% CI)						33.2%		
Heterogeneity: $Tau^2 = 0$; $Chi^2 = 0.0$	2, df = 1 (l	P = 0.8	8); I ² = 0%	6				
Type = Complex								
Lareyre	2	11	14	65	21.3%	18.7%	0.81 [0.16; 4.18]	
Tenorio	12	56	18	198	40.1%	48.1%	2.73 [1.22; 6.08]	
Total (fixed effect, 95% CI)		67		263	61.4%		2.06 [1.02; 4.17]	
Total (random effects, 95% CI)						66.8%		
Heterogeneity: Tau ² = 0.3099; Chi ²		= 1 (P	= 0.19); 1	² = 42%	10			
Total (fixed effect, 95% CI)		128		351	100.0%		1.54 [0.84; 2.84]	
Total (random effects, 95% CI)						100.0%	1.40 [0.63; 3.08]	
Heterogeneity: Tau ² = 0.1724; Chi ²		= 3 (P	= 0.26); [$^{2} = 25^{\circ}$	10			
	,	- (.		,				0.2 0.5 1 2 5

Meta-analysis of renal infarction rate between groups 1 and 2 for standard EVAR and complex endovascular aneurysm repair

Early period

The **risk of renal infarction** <u>in standard EVAR</u> subgroup was <u>higher in group 1</u> than in group 2 (OR, 93.3; 95% CI, 1.48-5869; I₂=92%)

The **risk of renal infarction** in complex aneurysm subgroup was higher in group 1 than in group 2 (OR, 8.58; 95% CI, 4.59-16.04; I₂=0%)

Meta-analysis of chronic renal failure incidence between groups 1 and 2 for standard EVAR and complex endovascular aneurysm repair

Follow up period

In the standard EVAR subgroup, the risk of CRF was similar between the groups 1 and 2 (OR, 4.44; 95% CI, 0.46-42.61; $l_1^{=}$ 87%) in the complex aneurysm subgroup, the risk of CRF was similar between groups 1 and 2 (OR, 1.64; 95% CI, 0.88- 3.07; l_2 =not applicable)

Study or Subgroup Type = Standard	Experime Events				Weight (fixed)				Odds Ratio MH, Fixed + Random, 95% CI
Sadeghi-Azandaryani et al.	17	43	0		0.6%	11.8%	135.38 [7.88;	2324.96]	
Maurer	6	19	7	46	9.6%	25.6%	2.57 [0.73;	9.05]	
du Mont	10	25	71	159	39.7%	30.1%	0.83 [0.35;	1.95]	-
Total (fixed effect, 95% CI)		87		307	49.9%		2.83 [1.63;	4.92]	+
Total (random effects, 95% CI)						67.5%	4.44 [0.46;	42.61]	
Type = Complex Tenorio Total (fixed effect, 95% CI) Total (random effects, 95% CI) Heterogeneity: not applicable	21	56 56	53	198 198	50.1% 50.1%	32.5% 32.5%	1.64 [0.88; 1.64 [0.88; 1.64 [0.88;	3.07] 3.07] 3.07]	aranana arana aran
Total (fixed effect, 95% Cl) Total (random effects, 95% Cl) Heterogeneity: $Tau^2 = 1.0412$; Chi^2		143 f = 3 (F	^o < 0.01);		100.0% %	 100.0%	2.23 [1.48; 2.52 [0.76;	3.37] 8.33]	0.001 0.1 1 10 100

Meta-analysis of mortality rate between groups 1 and group 2 for standard EVAR and complex endovascular aneurysm repair

Follow up period

The **mortality rate** in the <u>standard EVAR subgroup</u> was also <u>similar</u> between groups 1 and 2 (OR, 0.91; 95% Cl, 0.36-2.31; $I_2=0\%$)

The **mortality rate** in <u>the complex aneurysm subgroup</u> was also <u>similar</u> between groups 1 and 2 (OR, 3.63; 95% CI, 0.14-96.29; I_2 =56%)

Study or	Experin				Weight	Weight			Odds Ratio
Subgroup	Events	Total	Events	Total	(fixed)	(random)	MH, Fixed + Ran	dom, 95% Cl	MH, Fixed + Random, 95% C
Type = Standard									
Karmacharya	0	35	0	26	0.0%	0.0%			
Greenberg	6	40	3	29	25.2%	32.9%	1.53 [0.35;	6.70]	
Malgor	0	42	1	42	12.7%	8.2%	0.33 [0.01;	8.22]	
Sadeghi-Azandaryani et al.	0	43	0	102	0.0%	0.0%			
du Mont	3	25	25	159	51.1%	41.2%	0.73 [0.20;	2.63]	
Total (fixed effect, 95% CI)		185		358	89.0%		0.90 [0.37;	2.19]	-
Total (random effects, 95% CI)						82.2%	0.91 [0.36;	2.31]	-
Type = Complex Lareyre	0	11	0	65	0.0%	0.0%			
Lareyre	2	10	0	33	1.6%	8.7%	19.71 [0.86;	449.98]	1
Tenorio	0	56	2	198	9.4%	9.1%	0.70 [0.03;	14.70]	
Total (fixed effect, 95% CI)		77		296	11.0%		3.47 [0.69;	17.55]	
T + 1 / I // 0.F0/ 01)						17.8%	3.63 [0.14;	96.29]	
Total (random effects, 95% CI)									
		f = 1 (P	= 0.13);	2 = 56%	6				
Total (random effects, 95% Cl) Heterogeneity: Tau ² = 3.1067; Chi ² Total (fixed effect, 95% Cl)		f = 1 (P 262			6 100.0%		1.18 [0.55;	2.55]	-
Heterogeneity: Tau ² = 3.1067; Chi ²	= 2.25, df					 100.0%	1.18 [0.55; 1.16 [0.45;		+
Heterogeneity: Tau ² = 3.1067; Chi ² Total (fixed effect, 95% Cl)	= 2.25, df	262		654	100.0%	 100.0%			· · · · · · · · · · · · · · · · · · ·

Conclusion

- ARA (<4 mm) coverage in patients undergoing standard EVAR or endovascular repair of complex aneurysms is associated with <u>only</u> an <u>increased risk of renal infarction</u>
- No impact of ARA (<4 mm) coverage was demonstrated on <u>renal function</u> and <u>mortality</u> in the early postoperative and follow-up period.

Thank you

