Brain MRIs Analisis in Taxinomisis project Laura Ludovica Gramegna^{1,2}, MD - Luigi Cirillo^{1,2}, MD - David Neil Manners^{1,2} (Engineer) ¹Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy ²Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna ### Neuroadiological imaging #### **Brain MRI** interpretation of ischemic lesions... - 1) Cortical Infarct (Chronic ischemic lesions) - 2) Small Vessel Disease - 3) Silent brain ischemia #### ... in Taxinomisis Project - Baseline Brain MRI - Visual Inspection - Automated Segmentation - Future perspective ### 1) Cortical infarct = anterior circulation ### 1) Cortical infarct = watershed infarct ### 1) Cortical infarct = small cortical infarct ### 1) Cortical infarct = posterior circulation ### 1) Cortical infarct = Cortical micro-infarcts MRI 7 Testa Prevalence of cortical microinfarct on autopsy: - 62% in patients with a diagnosis of vascular dementia - 43% in Alzheimer's disease - 24% in individuals aged around 75 years or older without a diagnosis of dementia before autopsy. - Affected individuals are estimated to have hundreds to thousands of cerebral microinfarcts Cortical ischemic lesions on magnetic resonance (MR) images obtained at 7 T Fluid-attenuated inversion recovery (FLAIR) images from a 57-year-old woman with a **history** of atrial fibrillation who presented with left-sided hemiparesis based on cortical ischemia in the right middle cerebral artery territory. Brundel M et al. J Cereb Blood Flow Metab 2012 ### 1) Chronic ischemic lesions Cortical-subcortical FLAIR-hypointense and hyperintense lesions ### 2) Small vessel disease (SVD) Lacunar infarcts White matter Hyperintesities Of presumed vascular origin ### 2) Small vessel disease (SVD) Lacunar infarcts White matter Hyperintesities Of presumed vascular origin # 2) SVD= White matter Hyperintesities Of presumed vascular origin ### 2) Small vessel disease (SVD) Lacunar infarcts White matter Hyperintesities Of presumed vascular origin ### 2) SVD= Lacunar infarct Acute MRI scan ~ 1 year later Almost disappeared White matter hyperintensity **Small CSF-containing lacuna** MIND & MOOD ## Could a silent stroke erode your memory? After CAS, new DWI focal lesions were detected in 34/59 pts (58%) - Median number of lesions: 3 (range 1 to 23) - Median volume: 0.35 cc (range 0.06 to 12 cc) - Only two patients experienced a transitory ischemic attack in the ipsilateral hemisphere Atherosclerotic aortic lesions increase the risk of cerebral embolism during carotid stenting in patients with complex aortic arch anatomy GianLuca Faggioli, MD, ^a Monica Ferri, MD, ^a Claudio Rapezzi, MD, ^b Caterina Tonon, MD, ^c Lamberto Manzoli, MD, ^d and Andrea Stella, MD, ^a Bologna and Chieti, Italy - After CAS, new DWI focal lesions were detected in 34/59 pts (58%) - Median number of lesions: 3 (range 1 to 23) - Median volume: 0.35 cc (range 0.06 to 12 cc) - Only two patients experienced a transitory ischemic attack in the ipsilateral hemisphere Atherosclerotic aortic lesions increase the risk of cerebral embolism during carotid stenting in patients with complex aortic arch anatomy GianLuca Faggioli, MD,* Monica Ferri, MD,* Claudio Rapezzi, MD,* Caterina Tonon, MD,* Lamberto Manzoli, MD,* and Andrea Stella, MD,* Bolonna and Chieti, Italy ## Silent Brain Infarction and Risk of Future Stroke: A Systematic Review and Meta-Analysis Ajay Gupta, MD^{1,2,*}, Ashley E. Giambrone, PhD³, Gino Gialdini, MD², Caitlin Finn, BS¹, Diana Delgado, MLS⁴, Jose Gutierrez, MD, MPH⁵, Clinton Wright, MD, MS⁶, Alexa S. Beiser, PhD⁷, Sudha Seshadri, MD⁸, Ankur Pandya, PhD⁹, and Hooman Kamel, MD^{2,10} **Conclusions**—SBI is present in approximately one in five stroke-free older adults and is associated with a 2-fold increased risk of future stroke. Future studies of in-depth stroke risk evaluations and intensive prevention measures are warranted in patients with clinically unrecognized radiologically evident brain infarctions. ### Silent Brain Ischemia Supplemental Table III: Silent Brain Infarction Definitions | Study
Number | Study First Author and Year | Magnet Field
Strength | Section
Thickness
(mm) | Section
Gap (mm) | Size
classification | SBI MRI Signal Characteristics | Means of differentiating SBI from perivascular spaces | Means of detecting SBI in patients with documented prior stroke | |-----------------|------------------------------|----------------------------|------------------------------|---------------------|------------------------|--|--|---| | 1 | Bernick 2001 ¹ | 0.35 and 1.5
Tesla | 5 mm | 0 | 3 mm or greater | brighter lesions on spin density and T2 sequences than normal gray matter (for cortical and deep grey matter); brighter at spin density and T1 hypointense (for white matter) | spin density brigthness used to distinguish SBI from perivascular spaces | NA | | 2 | Kario 2001 ² | 1.5 Tesla | 7.8 to 8.0 mm | not
specified | 3 to 15 mm | low signal intensity area on T1-weighted images that was also visible as a hyperintense lesion on T2-weighted images | not specified | NA | | 3 | Naganuma 2005 ³ | 1.5 Tesla | 10 mm | not
specified | >3 mm | focal area on both T1 and T2-weighted images that was visible as low-intensity
areas on T1 weighted image and as high signal intensity area on T2 weighted
images. | not specified | NA | | 4 | Bokura 2006 ⁴ | 0.15, 0.2 and 1.5
Tesla | 10 mm, 7 mm | not
specified | >3 mm | focal hyperintensity lesion on T2WI corresponding to a hypointensity lesion on T1WI | proton density weighted or FLAIR images used to distinguish infarcts from dilated perivascular spaces | NA | | 5 | Debette 2010 ⁵ | 1 or 1.5 Tesla | 4 mm | not
specified | >3 mm | area of abnormal signal intensity in a vascular distribution, at least 3 mm in size
with a cerebrospinal fluid density on the subtraction image and, for lesions in the
basal ganglia area, distinct separation from the circle of Willis vessels | size, location, shape, and tissue contrast to distinguish SBI from dilated perivascular spaces | NA | | 6 | Putaala 2011 ⁶ | 1.0 to 1.5 Tesla | not specified | not
specified | ≥ 3 mm | focal hyperintensity on T2-weighted images without a corresponding history of neurologic symptoms or signs | simultaneous hyperintensity on T2-weighted images and hypointensity on FLAIR images for perivascular spaces as opposed to SBI | MRI of the brain studies acquired at the initial presentation for acute ischemic
stroke were reinterpreted by study stroke neurologists and a senior
neuroradiologist. SBI classification required appropriate imaging criteria as well
as no corresponding history of neurologic symptoms or signs. | | 7 | Umemura 2011 ⁷ | 1.5 Tesla | 5 mm | 2 mm | >3 mm | areas of focal hyperintensity larger than 3 mm in diameter detected on T2-
weighted images, hypointensity areas on T1-weighted images and areas of
hypointensity surrounded by hyperintense rim on FLAIR images. | lesions less than 3 mm in diameter or with a signal intensity similar to
that of cerebrospinal fluid on FLAIR images excluded because of the
high possibility of enlarged perivascular spaces, even if hyperintensity
on T2-weighted images and hypointensity on T1-weighted images | NA NA | | 8 | Gioia 2012 ^a | 1.5 T or 3 Tesla | not specified | not
specified | ≥ 3 mm | focal hyperintensities on T2-weighted and FLAIR-weighted sequences, 3 mm in
diameter, without corresponding neurologic symptoms; leukoaraiosis defined as
multifocal or confluent hyperintensities located in periventicular or subcortical
regions or in the pontine white matter on T2-weighted or FLAIR sequences.
Differentiated from SBIs based on lesion morphology and localization | hyperintensity of T2-FLAIR images used to distinguish SBI from dilated perivascular space | SBI determined on imaging performed during the patient's initial workup for acute ischemic stroke; consensus of 2 neurologists needed to establish a lesion as an asymptomatic brain infarction using all available clinical data | | 9 | Poels 2012 ^a | 1.5 Tesla | 5 or 6 mm | 1 or 2 mm | at least 3 mm | evidence of one or more infarcts on MRI, without a history of (corresponding) stroke or TIA (focal hyperintensities on T2 weighted images); white matter lesions (rather than SBIs) were considered to be present if hyperintensities were visible on proton-density and T2-weighted images, without prominent hypointensities on T1-weighted scans | proton density scans were used to distinguish infarcts from dilated perivascular spaces | NA | | 10 | Weber 2012 ¹⁰ | Not specified | not specified | not
specified | ≥ 3 mm | focal hyperintense lesion on T2-weighted images and/or fluid-attenuated
inversion recovery with no corresponding symptoms in the clinical history of the
patient that could be attributed to the lesion; SBI were distinguished from
nonspecific subcortical and periventricular white matter lesions by the presence
of a corresponding hypointense lesion on T1-weighted images | hyperintensity of T2-FLAIR images used to distinguish SBI from dilated perivascular space | Two study investigators defined SBI on the baseline imaging performed for
acute ischemic stroke as chronic lesions with no corresponding symploms in the
clinical history of the patient that could be attributed the presumed SBI;
Information about symptoms of the qualifying ischemic stroke was collected
using baseline case report forms | | 11 | Di Tullio 2013 ¹¹ | 1.5 Tesla | FLAIR=3 mm;
T1=1.3 mm | 0 mm | ≥ 3 mm | (1) CSF density on the subtraction image and (2) if the stroke was in the basal ganglia area, distinct separation from the circle of Willis vessels and perivascular spaces. | lesion morphology used to distinguish SBI from perivascular spaces | NA | | 12 | Miwa 2013 ¹² | Not specified | Not specified | not
specified | >3 and <15 mm | hypointense lesion and hyperintense rim on FLAIR images when located
supratentorially, according to the corresponding hyperintensity and
hypointensity on T2- and T1-weighted images, respectively, without
stroke history. | hyperintensity of T2-FLAIR images used to distinguish S8I from dilated perivascular space | NA . | | 13 | Windham 2015 ¹³ | 1.5 Tesla | 5 mm | 0 | ≥ 3 mm | lesions 3 mm in size and visible on both T1- and proton-density/T2-weighted images were classified as infarcts; an additional analysis was performed on putative vascular lesions <3 mm which were too small to definitely characterize as SBI | spin density brigthness used to distinguish SBI from perivascular spaces | NA NA | #### Supplemental Table III: Silent Brain Infarction Definitions focal hyperintensity on T2-weighted images without a corresponding history of neurologic symptoms or signs areas of focal hyperintensity larger than 3 mm in diameter detected on T2weighted images, hypointensity areas on T1-weighted images and areas of hypointensity surrounded by hyperintense rim on FLAIR images. focal hyperintensities on T2-weighted and FLAIR-weighted sequences, 3 mm in diameter, without corresponding neurologic symptoms; leukoaraiosis defined as multifocal or confluent hyperintensities located in periventicular or subcortical regions or in the pontine white matter on T2-weighted or FLAIR sequences. Differentiated from SBIs based on lesion morphology and localization ### Neuroadiological imaging #### Brain MRI interpretation of ischemic lesions... - 1) Cortical Infarct (Chronic ischemic lesions) - 2) Small Vessel Disease - 3) Silent brain ischemia #### ... in **Taxinomisis Project** - Baseline Brain MRI - Visual Inspection of chronic infarcts - Automatic Segmentation - Future perspective | Site | Location | Scanner | N of baseline studies | |------|-----------|------------------------|-----------------------| | FCRB | Barcelona | Siemens Vida 3T | 25 | | NKUA | Athens | GE SIGNA Explorer 1.5T | 62 | | TUM | Munich | Philips Ingenia 3T | 57 | | UBEO | Belgrade | Siemens Skyra 3T | 115 | | UMC | Utrecht | Philips Ingenia 3T | 37 | | USMI | Genova | Siemens Prisma 3T | 24 | **FLAIR-DWI** ### 1) Visual inspection: chronic infarcts **Chronic cortical infarcts** **Basal Ganglia** Lacune ### Preliminary UBEO data (n=114) — Visual Inspection 47 chronic infarcts (38 asymptomatic) 25 cortical infarcts 6 lacunae basal ganglia 16 lacunae deep white matter # Preliminary UBEO data — Visual Inspection 38/114 (33%) of total population (mean age 67± 6 y) has silent brain infarction 25 cortical infarcts 6 lacunae basal ganglia 16 lacunae deep white matter # Preliminary UBEO data — Visual Inspection Higher prevalence of silent brain infarct in comparison to the literature #### Silent brain infarcts: a systematic review Sarah E Vermeer, William T Longstreth Jr, Peter J Koudstaal | | General population | N | Mean age (range), years | SBI, % | |--|--|------|-------------------------|--------| | Helsinki Aging Brain Study (HABS), 1995 ⁹ | Finland, elderly oversampled, not institutionalised, no neurological disease | 128 | 72 (56–88) | 16 | | Cardiovascular Health Study (CHS), 1997 ¹⁰ | USA, African-Americans oversampled, not institutionalised, no stroke | 3397 | 75 (65–97) | 28 | | Atherosclerosis Risk in Communities (ARIC) Study, 1998 ¹¹ | USA, African-Americans oversampled, no stroke or transient ischaemic attack | 1538 | 63 (55-72) | 11 | | Rotterdam Scan Study (RSS), 2002 ¹² | Netherlands, elderly oversampled, no dementia | 1077 | 72 (60–90) | 20 | | National Institute for Longevity Sciences - Longitudinal Study of Aging (NILS-LSA), 2003 13 | Japan, no stroke or transient ischaemic attack | 1721 | 59 (40–79) | 10 | | Memory and Morbidity in Augsburg Elderly (MEMO) study, 2004 ¹⁴ | Germany, participants of MONICA survey, not institutionalised, no stroke | 267 | 72 (65–83) | 13 | | Framingham Heart Study (FHS), 2005 ¹⁵ | USA, original participants and their offspring, no stroke or dementia | 2081 | 62 (34-97) | 12 | | Austrian Stroke Prevention Study (ASPS), 2006 ¹⁶ | Austria, not institutionalised, no stroke or dementia | 505 | 64 (50-75) | 8 | Figure 2: Prevalence of silent brain infarcts with increasing age, as reported in six population-based studies HABS, Helsiski (Finland) Aging Brain Study; "OHS, Cardiovascular Health Study;" BSS, Botterdam Scan Study;" NLS-LSA, National Institute for Longevity Sciences-Longitudinal Study of Aging;" MEMO, Memory and Morbidity in Ausphung Eklerly Study;" and PHS, Framingham Heart Study." ### Preliminary UBEO data – Automatic segmentation presumed vascular origin» *lesion load* Automatic quantification of «white matter lesion of FLAIR image Lesion probability Probability threshold 98% Minimum cluster 5 voxels ### Preliminary UBEO data – Automatic segmentation Semi- Automatic Segmentation of chronic cortical and subcortical infarcts FLAIR image ### Step 1 = Brain MRI data for risk stratification model #### THE VISION OF THE RISK STRATIFICATION TOOL ### Step 1 = Brain MRI data for risk stratification model #### Excel file for each center | Visual inspection | score | |----------------------------|-------| | Fazekas score | 1-3 | | Cortical_infarct_present | 1-0 | | L_cortical_infarct | 1-0 | | R_cortical_infarct | 1-0 | | Posterior_cortical_infarct | 1-0 | | Lacunar_infarct | 1-0 | | Site of Lacunar Infarct | L-R | | Small subcortical infarct | 1-0 | | Site of the small infarct | L-R | **Automatic WMHPVO score** (software BIANCA) Segmentation map of the cortical, subcortical, lacunar infarcts (manually drawn two expert neuroradiologist) ### Step 2 = Description of the Brain MRI data? Carotid-plaque classification = active (cortical infarct) and symptomatic ### Step 2 = Description of the Brain MRI data? Carotid-plaque classification = **active** (cortical infarct) and **a**symptomatic ### Step 2 = Description of the Brain MRI data? Carotid-plaque classification = **active** (cortical infarct) and **a**symptomatic | Left active | Left symtpomatic | Right active | Right symtpomatic | |-------------|------------------|--------------|-------------------| | 25 (22%) | 9 (8%) | 27 (23%) | 4 (5%) | | 4 treated | 6 treated | 4 treated | none | ### Future perspective Discuss the data analysis after sharing • Find association of US and clinical data with status of the plaque at baseline #### Analisis proposal: - · Left active carotid vs left non active carotid - US and clinical characteristic (if any, which are independent) - · Right active carotid vs right non active carotid US and clinical characteristic (if any, which are independent) - · Patients with at least one active carotis vs without clinical characteristic (if any, which are independent) ### Thank you for your attention! ### Simplicity Is The Ultimate Sophistication -Leonardo Da Vinci