20 I 23 JUNE 2022

Liege I Théâtre de Liège I Belgium www.escvs2022.com

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

TAXINOMISIS

MRI plaque analysis

Marija Jovanovic, University of Belgrade, Serbia Georgios Karagiannis, University of Athens, Greece

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

The authors have no conflicts of interest to declare

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

MRI plaque analysis

- the new risk model to discriminate high versus low risk cases for cerebrovascular complications from carotid artery disease
- asymptomatic and symptomatic moderate to severe extracranial carotid artery stenosis
- MRI of carotid tree from aortic arch up to the circle of Willis (ACC, ACI, ACE)
- baseline and FU after 12 and 36 months

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

Goal of MRI

- stenosis degree
- intimal thickening, lipid or necrotic core, hemorrhage, fibrous cap, calcification, fibrosis
- FU carotid plaque progression
- plaques morphology classified according to the American Heart Association criteria

TABLE 1. Conventional and Modified AHA Classification of Atherosclerotic Plaque

Conventional AHA Classification	Modified AHA Classification for MRI		
Type I: initial lesion with foam cells	Type I-II: near-normal wall thickness, no calcification		
Type II: fatty streak with multiple foam cell layers			
Type III: preatheroma with extracellular lipid pools	Type III: diffuse intimal thickening or small eccentric plaque with no calcification		
Type IV: atheroma with a confluent extracellular lipid core Type V: fibroatheroma	Type IV–V: plaque with a lipid or necrotic core surrounded by fibrous tissue with possible calcification		
Type VI: complex plaque with possible surface defect, hemorrhage, or thrombus	Type VI: complex plaque with possible surface defect, hemorrhage, or thrombus		
Type VII: calcified plaque	Type VII: calcified plaque		
Type VIII: fibrotic plaque without lipid core	Type VIII: fibrotic plaque without lipid core and with possible small calcifications		

Cai et al. Classification of Human Carotid Atherosclerotic Lesions With In Vivo Multicontrast Magnetic Resonance Imaging. Circulation 2002; 106:1368-73

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

MRI protocol

- T1W, T2W, PD, TOF, Phase-contrast images
- T1W BB with FS before and after applying the contrast media

70[™] ESCVS CONGRESS & 7TH IMAD MEETING

20 I 23 JUNE 2022

Liège | Théâtre de Liège | Belgium www.escvs2022.com

MRI criteria for annotation of plaque components

Classification of Human Carotid Atherosclerotic Lesions With In Vivo Multicontrast Magnetic Resonance Imaging

Jian-Ming Cai, MD, PhD; Thomas S. Hatsukami, MD; Marina S. Ferguson, BS; Randy Small, BS; Nayak L. Polissar, PhD; Chun Yuan, PhD

Background-Rec **Ouantitative Evaluation of Carotid Plague Composition by** atherosclerotic p this study was to In Vivo MRI atherosclerotic p Methods and Resi were imaged wi T. Saam, M.S. Ferguson, V.L. Yarnykh, N. Takaya, D. Xu, N.L. Polissar, T.S. Hatsukami, C. Yuan different contras Magnetic Resonance in Medicine 55:659-668 (2006 was 0.25×0.25: Objective-Th images and hist Methods and 1 Automated In Vivo Segmentation of Carotid Plaque MRI obtained by MR time-of-fligl of 0.74 (0.67 to correspondi with Morphology-Enhanced Probability Maps as follows: type lipid-rich/ne lesions, 82% an the total wa Conclusions-In v Fei Liu,^{1*} Dongxiang Xu,¹ Marina S. Ferguson,¹ Baocheng Chu,¹ Tobias Saam,¹ reproducibil lesions in the hu LR/NC (23. Norihide Takaya,¹ Thomas S. Hatsukami,² Chun Yuan,¹ and William S. Kerwin¹ atherosclerotic r 64%; P=0. P<0.001).

ranging from Conclusionsclinical tria regression.

MRI is a promising noninvasive technique for characterizing atherosclerotic plaque composition in vivo, with an end-goal of assessing plaque vulnerability. Because of limitations arising from acquisition time, achievable resolution, contrast-to-noise ratio, patient motion, and the effects of blood flow, automatically identifying plaque composition remains a challenging task in vivo. In this article, a segmentation method using maximum a posteriori probability Bayesian theory is presented that divides axial, multi-contrast-weighted images into regions of necrotic core, calcification, loose matrix, and fibrous tissue. Key advantages of the method are that it utilizes morphologic information, such as local wall thickness, and coupled active contours to limit the impact from noise and artifacts associated with in vivo imaging. In experiments involving 142 sets of multi-contrast images from 26 subjects undergoing carotid endarterectomy,

segmented areas of each of these tissues per slice agreed with

review, automated segmentation would reduce the consid erable amount of training required to read these image and the corresponding inter-rater variability. Additionally, a viable, automated segmentation procedure would permit various combinations of contrast weightings and image characteristics to be objectively analyzed for accuracy in plaque characterization. Such studies have been conducted using automated segmentation of ex vivo endarterectomy specimens (6.7), but these results are difficult to translate to in vivo imaging, given the different constraints regarding acquisition time, resolution, contrast-to-noise ratio, and effects of blood flow. Recent efforts to demonstrate in vivo segmentation of some plaque components (8.9) are promising, but they have not yet been histologically validated.

Published March 22, 2012 as 10.3174/ainr.A3028

Automated Versus Manual In Vivo Segmentation of Carotid Plague MRI

Association of Age and Size of Carotid Artery Intraplague Hemorrhage and Minor Fibrous Cap Disruption: A High Resolution Magnetic Resonance Imaging Study

Yuanyuan Cui1, Huiyu Qiao2, Lu Ma1, Mingming Lu1, Jiafei Yang3, Guoen Yao4, Jianming Cai1.3 and Xihai Zhao²

Jianming Cai and Xihai Zhao are joint senior authors.

1Department of Radiology, PLA General Hospital, Beijing, China ²Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing,

China

³Department of Radiology, First Affiliated Hospital of PLA General Hospital, Beijing, China Department of Neurology, First Affiliated Hospital of PLA General Hospital, Beijing, China

Aim: To investigate the association between the volumes of different aging intraplaque hemorrhage (IPH) and minor fibrous cap disruption (MFCD) in carotid arteries.

Methods: Patients with cerebrovascular symptoms and carotid atherosclerotic plaques determined by ultrasound were recruited and underwent multi-contrast magnetic resonance (MR) vessel wall imaging for carotid arteries. Carotid plaques with IPH on MR imaging were included in the analysis. The age (fresh or recent) and the volume of IPH for each plaque were evaluated.

Results: In total, 41 carotid plaques in 37 patients (mean age 70.2 ± 11.0 years old; 32 males) were eligible for statistical analysis. The absolute volume of fresh IPH in plaques with MFCD was significantly larger than that in plaques without MFCD (109.83 ± 75.49 mm3 vs. 30.54 ± 20.62 mm3, P= 0.002). Logistic regression showed that the absolute volume of fresh IPH was significantly associated with MFCD before (odds ratio [OR], 1.735; 95% confidence interval [CI], 1.127-2.670; P=0.012) and after adjusting for confounding factors (OR, 1.823; 95% CI, 1.076-3.090; P=0.026). There was no significant association between recent IPH volume and MFCD (P>0.05).

Conclusion: The volume of fresh IPH is independently associated with MFCD in carotid plaques, suggesting that integrity of fibrous cap may change with different age and size of IPH.

R. van 't Klooster O. Naggara R. Marsico J.H.C. Reiber J.-F. Meder R.J. van der Geest

ORIGINAL

RESEARCH

E. Touzé

C. Oppenheim

MRI criteria for manual annotation of plaque components

	TOF	T1W	T2W	PDW	Morphological cues	Most added- valued image	Image where annotation should be performed
Lipid core (LC)	0	0/+	-/0	0/+	Diffuse or	T1W, T2W, TOF	T2W
		-	-	-	eccentric		
					thickening of		
					blood vessel wall,		
					the crescent-		
					shaped		
Fibrous cap (FC)	-	0	0	0	Juxtaluminal lesion	T1W (adjacent	TOF
						IPH or LC will	
						accentuate FC)	
Recent	+	+	+	+	Irregular, like LC,	T1W, T2W, TOF	T1W
hemorrhage					etc.		
(late subacute							
IPH)							
Calcification	-	-	-	-	Irregular, dot-like	All sequences	T1W
					or tubular		
					formations		
Fibrosis	0/+	0/+	0/+	-		All sequences	T1W

* 0 isointense, + hyperintense, - hypointense

** Signal intensities relative to the adjacent sternocleidomastoid muscle

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

Case 1

High T1, low T2 - LC

High T1, low T2 - LC

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

Case 2

20 I 23 JUNE 2022

Liège I Théâtre de Liège I Belgium www.escvs2022.com

Thank you