

20 I 23 JUNE 2022

www.escvs2022.com

How to best treat heavy calcified infrainguinal lesions BMS, DES, Scoring, Cutting Balloons, Atherectomy, Laser, etc.?

Jos C. van den Berg MD PhD

SFA-challenges

- Complex lesions i.e. high disease burden and presence of clinical and anatomic co-factors (lesion length, plaque burden and calcium) continue to present a challenge for endovascular modalities
- Vascular calcium presents a significant challenge to percutaneous interventions and results in:
 - Acute procedural failure (improper balloon/stent expansion)
 - Recoil, dissections and increased embolic risk
 - Diminished effectiveness of DCBs by impeding drug uptake
 - Increased post procedural stent use

SFA-challenges

- Inconsistent definitions of calcium severity across clinical trials due to lack of a uniform validated calcium scoring system
- How do we manage severe calcium for optimized outcomes?

Dilemma

- What is 'heavy' calcification?
- What about lesion length and lesion type (total occlusion vs. stenosis)?
- RCT's typically do not include severely calcified lesions

- Beth Israel classification
- Synvacor classification
- PACCS classification
- PARC classification

Beth Israel

Severe calcification:

 radiopacities noted on both sides of the arterial wall and extending more than <u>1 cm</u> of length prior to contrast injection or digital subtraction

SynvaCor

Severe calcification:

- calcium visible along both sides of the arterial wall
- covers <u>2 cm</u> or greater of the target lesion area
- encompasses greater than 50% of the total target lesion treatment area by visual estimate and/or the calcium is circumferential (360°) in nature
 - on both sides of the vessel lumen extending 2cm or greater on a single AP view

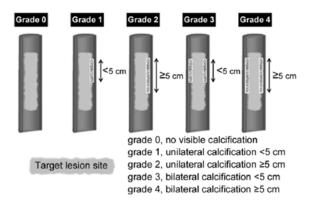
OR

 classified as exophytic calcification, significantly impedes blood flow in the vessel.

PACSS (Peripheral Arterial Calcium Scoring Scale) Grading System:

Grade 0: no visible calcium at the target lesion site

Grade 1: unilateral calcification < 5cm


Grade 2: unilateral calcification ≥ 5cm

Grade 3: bilateral calcification < 5cm

Grade 4: bilateral calcification ≥ 5cm

For grade 1-4 subdivision

- a) intimal calcification
- b) medical calcification
- c) mixed type

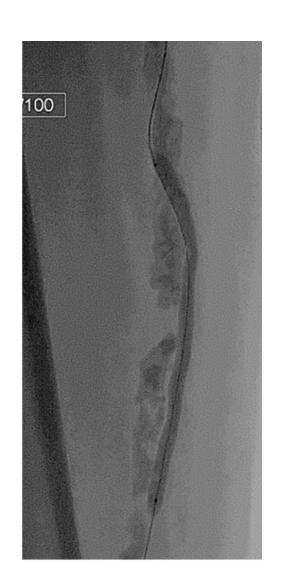
PARC (Peripheral Arterial Research Consortium)

Focal: <180⁰ (one side of vessel) and less than half the total lesion length

Mild: <180⁰ and greater than half the total lesion length

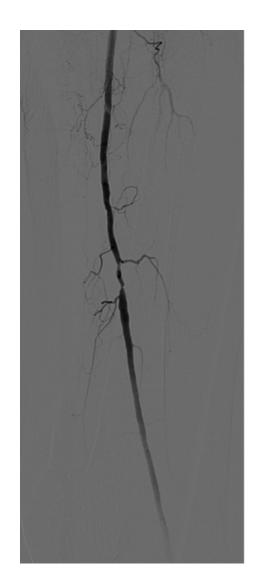
Moderate: ≥180⁰ (both sides of vessel at the same location) and less that half the total lesion length

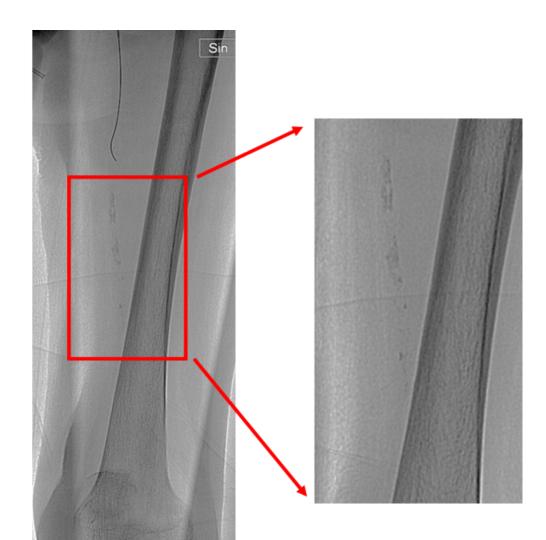
Severe: >180⁰ (both sides of the vessel at the same location) and greater than half the total lesion length


							•			
Fanelli et al ¹	1a	1b	2a	2b		3a	3b	4a	4b	
Circumferential burden	0-90°	0-90°	90-180°	90-180°	18	180 - 270° 180 - 270°		270-360°	270-360°	
Length	<3cm	>3cm	<3cm	>3cm		<3cm >3cm		<3cm	>3cm	
Compliance 360 ²	0	1	1				3	4/9	4/Severe	
Circumferential burden	None	None <180° (1 side of vessel)		<180° (1 side of vessel)		≥180° (both sides of vessel)		≥180° (bot	≥180° (both sides of vessel)	
Length	NA <50% of lesio		sion length	≥50% of lesion length		<50% of lesion length		≥50% of l	≥50% of lesion length	
PACSS ³	0 1		L	2			3		4	
Circumferential burden	None	None unilateral		unilateral		bilateral		bil	bilateral	
Length	NA	NA <5cm		≥5cm		<5cm		≥	≥5cm	
PARC ⁴	Focal			Mild		Moderate		Sev	Severe	
Circumferential burden	<180° (1 side of vessel) <18		O° (1 side of vessel)		≥180° (both sides of vessel)		≥180° (both	≥180° (both sides of vessel)		
Length	<1/2 lesion length		>1,	/2 lesion length		<1/2 lesion length		>1/2 lesi	>1/2 lesion length	
SynvaCore ⁵	Severe									
Circumferential burden	Both sides of the arterial wall									
Length	≥2cm									
Beth Israel ⁶		Severe								
Circumferential burden	Both sides of the arterial wall									
Length	≥1cm									
							-			

- 1. Fanelli F et al. Cardiovasc Intervent Radiol. 2014 Aug;37(4):898-907.
- 2. Dattilo R et al. J Invasive Cardiol. 2014 Aug;26(8):355-60.
- 3. Rocha-Singh KJ et al. Catheter CardiovascInterv. 2014 May 1;83(6):E212-20.
- 4. Patel MR et al. J Am Coll Cardiol. 2015 Mar 10;65(9):931-41. doi:

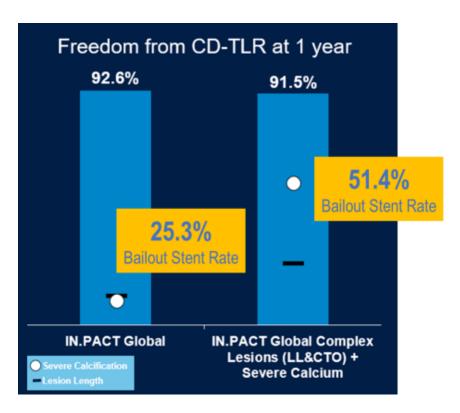
- 10.1016/j.jacc.2014.12.036. Erratum in: J Am Coll Cardiol. 2015 Jun 16;65(23):2578-9.
- 5. Rosenfield, K. et al. N Engl J Med 2015;373:145-153.
- 6. Schroe, H. et al. Catheter Cardiovasc Interv 2017;91:497-504.

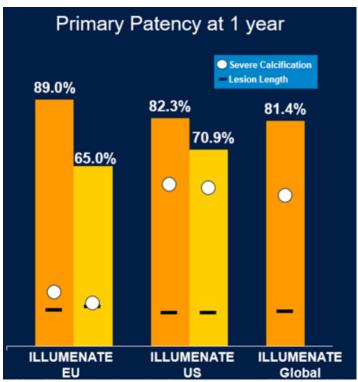

Severe calcification?

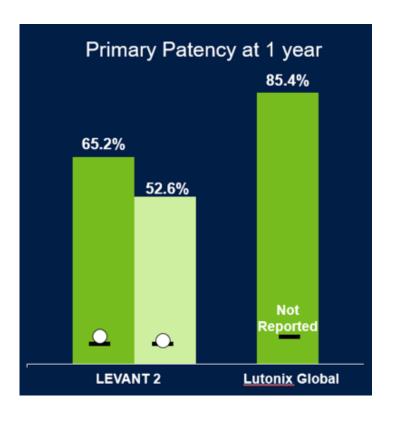


Definitely yes!

Severe calcification?

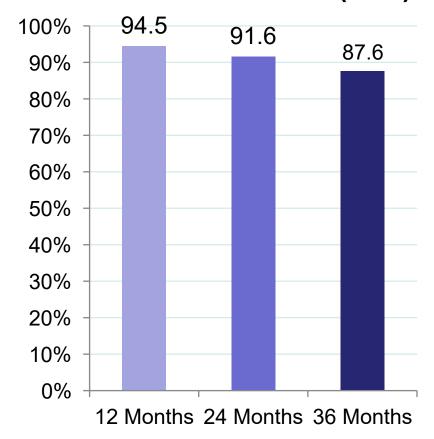

Maybe not


Problem of lesion length


- 2/3 of lesions longer than 10 cm
- Primary patency of longer lesions poor

	# patients	12 months	24 months	36 months
TASC A/B	46/82	79%	67%	57%
TASC C/D	38/35	53%	36%	19%

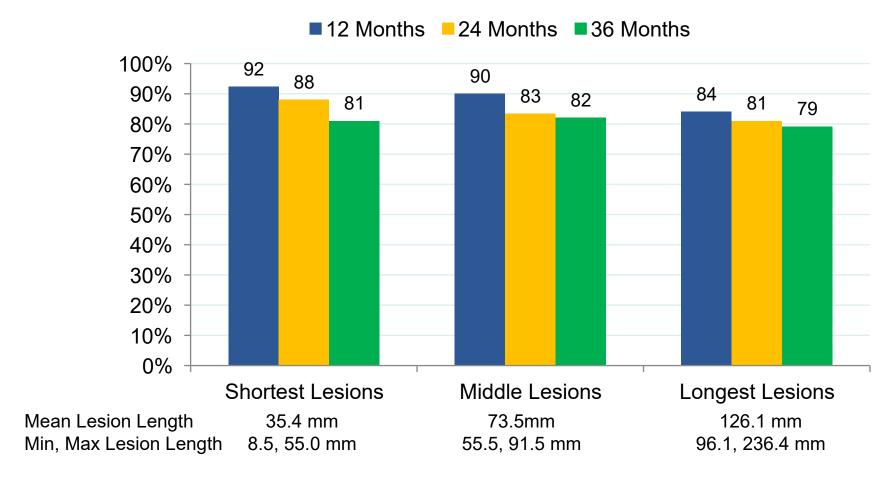
Calcified lesions and DCB



Calcified lesions and stents (interwoven nitinol)

- No RCT data
- Registry data (SUPERB)
- 45% 'severe calcification'
- No influence lesion length
- Influence of quality of stent deployment

Calcified lesions and stents (interwoven nitinol)


Freedom From TLR (K-M)

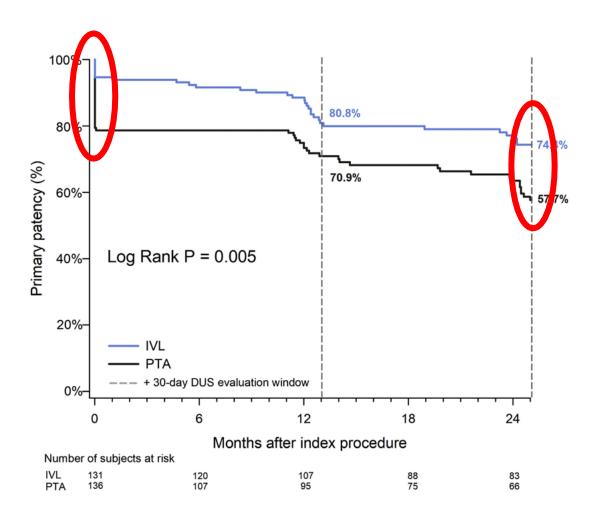
Superb Severe Calcification Subset							
Severe calcification	45%						
Patency (VIVA)	89%						

Severe Ca++ Beth Israel grading

Calcified lesions and stents (interwoven nitinol)

Calcified lesions and directional atherectomy

- DEFINITIVE AR DAART vs. DCB
- No statistically significant differences between arms
- Clinical opportunities for DAART
 - Added benefit of DA in lesions < 30% residual stenosis (RCT) vs. >30%
 - DUS patency: 84.2% vs. 77.8% (KM)
 - Angiographic patency: 88.2% vs. 68.8%
 - In the randomized DA+DCB arm, no stents were required


Calcified lesions and IVL

- RCT IVL plus DCB vs. DCB (DISRUPT PAD III)
- 306 patients with moderately-to-severely calcified femoropopliteal arteries IVL (n=153) or PTA (n =153) prior to DCB treatment or stenting (PARC grading)
- Powered secondary effectiveness endpoint: primary patency at 1 year, defined as freedom from clinically driven target lesion revascularization plus freedom from restenosis determined by duplex ultrasound
- Acute PTA failure requiring stent placement during the index procedure considered loss of primary patency

Calcified lesions and IVL

- Primary patency at 1 year was significantly greater in the IVL arm (80.5% vs 68.0%, P = .017)
- Provisional stenting significantly lower in the IVL group (4.6% vs 18.3%, P < .0001)
- Freedom from cdTLR (IVL: 95.7% vs PTA: 98.3%, P = .94) and restenosis rates (IVL: 90.0% vs PTA: 88.8%, P = .48) were similar between the 2 groups at 1 year
- At 2 years, primary patency remained significantly greater in the IVL arm (70.3% vs 51.3%, P=.003)
- Post hoc Kaplan-Meier analysis of primary patency modeled without defining provisional stenting as a failure demonstrated similar 2-year primary patency rates between the 2 groups (IVL: 79.2% vs PTA: 75.6%, P = .70)
- Post hoc Kaplan-Meier analysis of non-stented patients demonstrated similar 2-year primary patency rates between the 2 groups (IVL: 78.6% vs PTA: 72.7%, P = .48)

Calcified lesions and IVL

Meta-analysis

Comparative Effectiveness of Endovascular Treatment Modalities for De Novo Femoropopliteal Lesions: A Network Metaanalysis of Randomized Controlled Trials

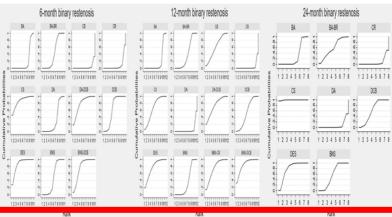
JOURNAL OF ASAGE Publication ENDOVASCULAR
As of the publication of the Second Control of

Journal of Endovascular Therapy 2020, Vol. 27(1) 42–59 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1526602819895996 www.jevt.org

\$SAGE

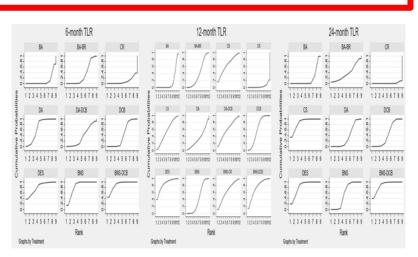
Yang Zhou, MM¹, Zhihui Zhang, MD¹, Shaomang Lin, MB¹, Jianbin Xiao, MM¹, Wenjia Ai, MD¹, Junwei Wang, MM¹, Yangyong Li, MM¹, and Qiang Li, MM¹

- Comparison of 14 treatments (atherectomy, brachytherapy, cryoplasty, cutting balloons, drug-coated balloons, bare nitinol stents, drug-eluting stents, covered stents, and combinations)
- 53 articles reporting on 45 studies (91 study arms; 5565 patients)


- Technical success
 - Stent technology most effective treatment and atherectomy the least effective treatment
 - Stent technology had significantly higher technical success rates than balloon angioplasty and atherectomy
 - Combination of balloon and atherectomy more effective treatment than either as a single treatment

- Binary restenosis
 - Most effective treatments were DES, BNS-DCB, and CS at 6-, 12- and 24month follow-up
 - DES most effective single treatment at the 12-month follow-up
 - Both DES and CS had significantly lower binary restenosis rates than the majority of other single treatments, including BA, CB, CR, DA, and BNS during all follow-up periods
 - CS had a lower 24-month binary restenosis rate than DES
 - DA-DCB was better than DA, BNS-DCB was better than BNS (12 months);
 combination therapies were more effective treatments than any of the single treatments

- Target lesion revascularization
 - BNS-DCB was the most effective treatment in 6- and 24-month follow-up, DES was the second effective single treatment at 6-month follow-up and most effective single treatment in the 12-month period
 - CS was the most effective single treatment at the 24-month follow-up
 - Both DES and CS had significantly lower TLR rates than the majority of other single treatments
 - BNS-DCB was better than BNS and DCB with regard to 24-month TLR


Table 1. Characteristics of the Eligible Studies Included in the Network Meta-analysis.

Study	Follow-up, mo	Treatment Arms	Patients	Men, %	Age, y	Lesion Length, mm	Occlusion, %	CLTI, %
Vroegindeweij 1995	24	BA vs DA	35 vs 38	75.3	64.0	n/a	4.1	0.0
Shammas 2011	12	BA vs DA	29 vs 29	63.8	69.2	88.1	n/a	20.7
Nakamura 1995	6	BA vs RA	13 vs 26	97.4	65.0	194.0	100.0	0.0
Dattilo 2014	6	BA vs OA	27 vs 38	32.0	69.7	68.9	20.0	n/a
Zeller 2017	12	DCB vs DA-DCB	54 vs 48	66.7	69.5	104.0	29.4	2.0
Krankenberg 2007	12	BA vs BNS	121 vs 123	68.9	66.5	44.9	30.7	3.0
Laird 2010 (RESILIENT)	36	BA vs BNS	72 vs 134	69.4	67.3	68.3	17.5	0.5
Schillinger 2006 and 2007	12 / 24	BA vs BNS	53 vs 51	52.9	66.5	96.4	34.6	12.5
Dick 2009	12	BA vs BNS	39 vs 34	68.5	69.0	72.9	38.4	5.5
Zdanowski 1999	12	BA vs BNS	17 vs 15	43.8	71.5	72.4	100.0	84.4
Chalmers 2012 (SUPER)	12	BA vs BNS	76 vs 74	82.0	67.9	119.9	93.3	18.0
Rastan 2013 and 2015	12 / 24	BA vs BNS	127 vs 119	64.3	72.5	42.3	33.0	20.7
Krueger 2004	24	BA vs BA-BR	15 vs 15	76.7	60.9	30.0	3.3	n/a
Gallino 2004 (PAB)	6	BA vs BA-BR	84 vs 81	61.5	72.0	51.0	26.6	0.0
Waksman 2003 (PARIS II)	12	BA vs BA-BR	40 vs 35	n/a	n/a	n/a	m/a	n/a
Zehnder 2003 (Swiss)	12	BA vs BA-BR	49 vs 51	58.0	70.8	46.6	10.0	8.0
van Tongeren 2005 (VARA) Minar 20	12	BA vs BA-BR	33 vs 27	66.7	64.0	35.2	31.7	13.3
Pokrajac 005 (Vienna3)	24	BA vs BA-BR	67 vs 67	64.6	n/a	91.0	29.2	19.8

Poorpius 105 (Viennas) Poorpius 101 No siu proup in a particular in a particul

Fossacec 2011	12	BA Vs CK	24 vs 24	56.3	70.0	n/a	n/a	n/a.
Shammar 012	6	BA vs CR	20 vs 20	47.5	67.1	90.4	n/a	15.0
Spiliopoulos 2010	36	BA vs CR	26 vs 24	82.0	67.9	119.5	18.5	40.0
Lammer 2013 and 2015 (VIASTAR)	12 / 24	BNS vs CS	69 vs 72	70.9	69.1	181.7	72.3	15.6
Saxon 2003 and 2008	12 / 24	BA vs CS	100 vs 97	76.1	67.0	70.0	24.9	10.7
Jia 2016 (Acotec)	12	BA vs DCB	100 vs 100	73.5	65.8	149.5	54.5	42.0
Scheinert 2015 (BIOLUX PI)	12	BA vs DCB	30 vs 30	57.0	70.8	60.0	n/a	16.7
Liistro 2013 (DEBATE SFA)	12	BNS vs BNS-DCB	51 vs 53	69.1	75.0	95.0	61.9	74.0
Tepe 2017 and Albrecht 2018 (CONSEQUENT)	12 / 24	BA vs DCB	75 vs 78	68.0	68.1	131.6	26.1	0.0
Werk 2013 (Fempac)	24	BA vs DCB	42 vs 45	60.0	68.7	43.4	15.9	5.8
Tepe 2015 and Laird 2015 (IN.PACT SFA)	12 / 24	BA vs DCB	III vs 220	66.0	67.7	88.7	24.7	5.4
Werk 2012 (Pacifier)	12	BA vs DCB	44 vs 41	61.6	71.0	67.9	30.8	4.4
Tepe 2008 (Thunder)	24	BA vs DCB	54 vs 48	63.9	68.5	74.5	26.5	12.8
Krishnan 2017 (ILLUMENATE)	12	BA vs DCB	100 vs 200	58.7	68.8	83.0	18.7	4.3
Schroeder 2017 (ILLUMENATE EU)	12	BA vs DCB	72 vs 222	71.1	67.5	71.8	19.0	1.7
Bausback 2017 and Steiner 2018 (RANGER)	6/12	BA vs DCB	34 vs 71	72.4	67.7	65.4	34.0	2.9
Scheinert 2014 (LEVANTI)	24	BA vs DCB	52 vs 49	63.3	68.5	80.5	41.5	6.9
Rosenfield 2015 (LEVANT2)	12	BA vs DCB	160 vs 316	63.0	68.2	63.0	21.3	8.0
Duda 2002	6	BNS vs DES	18 vs 18	75.0	65.5	85.8	57.6	n/a
Duda 2005	6	BNS vs DES	28 vs 29	70.2	66.7	81.5	66.7	n/a
Duda 2006	24	BNS vs DES	46 vs 47	72.0	66.1	83.0	61.3	n/a
Dake 2011 and 2013	12 / 24	BNS vs DES	59 vs 61	64.8	67.8	64.7	27.1	n/a
Banerjee 2012 (Cobra)	12	BNS vs BNS-CR	29 vs 29	84.5	64.4	106.7	41.4	13.5
Ott 2017	24	BNS-DCB vs BNS vs DA	48 vs 52 vs 55	71.6	69.2	65.8	56.1	5.8

Summary

- Presence of calcium in the vasculature still poses a significant challenge to current endovascular device strategies
- Results from contemporary studies show promising outcomes when treating calcified lesions, however comparisons across these trials are futile given differences in calcium definitions and differences in adjudication

Conclusion

- As to what is the best treatment for heavily calcified lesions in the infra-inguinal segment the jury is still out
- Even network meta-analyses consider only highly selected patient groups, not taking into considering degree of calcification or lesion length
- More data is needed to answer the question "How to best treat heavy calcified infrainguinal lesions BMS, DES, Scoring, Cutting Balloons, Atherectomy, Laser, etc.?"

europe.amptheclimeeting.com

20 I 23 JUNE 2022

www.escvs2022.com

How to best treat heavy calcified infrainguinal lesions
BMS, DES, Scoring, Cutting
Balloons, Atherectomy, Laser, etc.?

Jos C. van den Berg MD PhD