

TMVI vs TEER for functional MR ESCVS IMAD Liège – June 22nd, 2022

Christophe Dubois, MD, PhD, FESC

Department of Cardiovascular Medicine, UZ & KU Leuven, Belgium

• Steering committee member of HIGHLIFE clinical study

Funtional Mitral Regurgitation: Background

- Mitral regurgitation secondary to LV remodelling (= secondary/functional MR or SMR/FMR) affects one-third of patients with heart failure (HF).¹
- SMR is associated with progression of symptoms, clinical deterioration and adverse clinical events.^{2,3}
- Guidelinesrecommend a multidisciplinary approach for the treatment of SMR.⁴

KU LEUVEN

¹Varadarajan et al., J Am Soc Echocardiogr 2006 ²Bursi et al., Eur J Heart Fail 2010 ³Goliasch et al., Eur Heart J 2018 ⁴Coats et al., Eur Heart J 2021

Transcatheter Edge-to-Edge Repair (TEER)

- Transcatheter Edge-to-Edge Repair (TEER) is an established endovascular therapy for SMR, which has shown
 - high procedural safety,

KU LEUVEN

- functional improvement and
- improved survival and reduced HF hospitalisations compared to GDMT alone (in selected patients).⁵

⁵Stone et al., NEJM 2018 ⁶Reichart et al., Eur J Heart Fail 2020

Transcatheter Mitral Valve Implantation (TMVI)

- Transcatheter Mitral Valve Implantation (TMVI) is a novel treatment alternative for patients with severe SMR, who are considered ineligible for TEER and mitral valve surgery.
- Several studies have demonstrated favourable procedural and short-term outcomes with different dedicated TMVI systems.⁷⁻¹¹
- One central aspect of TMVI seems to be complete and predictable elimination of MR.

KU LEUVEN

■None/Trivial ■1+ =2+ =3+ =4+

⁷Bapat et al. JACC 2018 ⁸Sorajja et al. JACC 2019 ⁹Ludwig et al. Clin Res Cardiol 2020 ¹⁰Conradi et al. PCR eCourse 2020 ¹¹Muller et al. PCR eCourse

Study Design

VS.

EuroSMR Registry

- N=1676 patients
- TEER for SMR

KU LEUVEN

• 11 European high-volume centers

DRKS00017428

CHOICE-MI Registry

- N=229 patients (N=156 with SMR)
- TMVI for severe MR with eight different devices
- 26 centers from Europe, North America and Australia

NCT04688190

Investigated Outcomes

- Baseline clinical and echocardiographic parameters
- Echocardiographic outcome (residual MR)
- Functional outcome (NYHA functional Class)
- All-cause Death after 30 days and 2 years

KU LEUVEN

- <u>Combined Endpoint</u>: All-cause Death or HF Hospitalisation after 2 years
- Subgroup analysis for the Combined Endpoint

Baseline Characteristics

Propensity Score-matched	TEER (N=499)	TMVI (N=144)	p-value
Age (years)	76.7 (70.0, 80.8)	75.0 (70.3, 80.0)	0.64
Male sex	322 (64.4)	93 (64.7)	0.93
EuroSCORE II (%)	7.5 (3.9, 14.1)	6.3 (3.7, 13.6)	0.32
Diabetes mellitus	157 (34.2)	38 (26.8)	0.15
COPD	85 (17.1)	24 (17.0)	1.00
Prior myocardial infarction	208 (41.6)	67 (46.5)	0.37
Prior CABG No. (%)	137 (27.5)	46 (32.3)	0.34
eGFR (mL/min/1.73 m ²)	45.8 (33.0, 60.4)	45.3 (34.8, 64.1)	0.51
LVEF (%)	36.1 (31.7, 44.9)	38.9 (32.0, 45.1)	0.21
LVEDV (mL)	162.0 (119.0, 210.4)	167.4 (130.1, 218.7)	0.37
EROA (cm ²)	0.32 (0.22, 0.43)	0.30 (0.21, 0.41)	0.20
MVPG (mmHg)	3.0 (2.1, 5.1)	2.9 (2.0, 3.8)	0.35
TAPSE	16.6 (14.0, 19.8)	15.1 (12.1, 19.2)	0.070
≥ moderate TR	248 (49.6)	72 (49.9)	0.94
PASP (mmHg)	46.7 (38.0 <i>,</i> 56.8)	49.3 (39.2, 58.4)	0.27

Ludwig et al. CHOICE-MI and EuroSMR Investigators, ESC 2021

JVEN

Functional Outcome

KU LEUVEN

All-cause Death

Subgroup Analysis

All-cause Death or HF Hospitalisation

Subgroup			HR (95% CI)	p-value
Age	<75 years ≥75 years		0.82 (0.49, 1.37) 0.83 (0.54, 1.29)	0.45 0.41
Sex	Female Male		0.68 (0.40, 1.18) 0.93 (0.61, 1.41)	0.17 0.72
LVEF	<30% ≥30%		0.76 (0.30, 1.91) 0.84 (0.59, 1.20)	0.54 0.34
LVEDV	<180 mL ≥180 mL		0.85 (0.53, 1.37) 0.82 (0.48, 1.39)	0.51 0.45
EROA	<0.4 cm² ≥0.4 cm²		0.81 (0.52, 1.27) 0.88 (0.41, 1.86)	0.36 0.72
Mean MVPG	≥4.5 mmHg <4.5 mmHg		0.93 (0.64, 1.36) 0.50 (0.15, 1.62)	0.71 0.22
COPD	Yes No		0.87 (0.38, 1.99) 0.82 (0.57, 1.18)	0.74 0.29
Pulmonary hypertension PASP >50 mmHg	Yes No		0.71 (0.42, 1.17) 0.94 (0.60, 1.47)	0.18 0.78
RV dysfunction TAPSE <17 mm	Yes No		1.06 (0.68, 1.65) 0.62 (0.34, 1.12)	0.78 0.11
≥ moderate TR	Yes No		1.00 (0.65, 1.55) 0.65 (0.39, 1.08)	0.99 0.094
	0.	12 0.25 0.50 1.0 2.0 4.0	8.0	

Favours TEER Favours TMVI

KU LEUVEN

 Based on data from two large multicentre registries, a propensity scorematched comparison between SMR patients treated with either TEER or TMVI allows to conclude:

Ludwig et al. CHOICE-MI and EuroSMR Investigators, ESC 2021

KU LEUVEN

Limitations

- This is a retrospective analysis of registry data and all results can only be hypothesis-generating.
- Propensity score matching does not equal prospective randomisation.
- Patients treated with TMVI are considered suboptimal candidates for TEER. Therefore, comparability of both groups is limited per se.
- This analysis may have disregarded a potential learning curve effect with TMVI.

Mitral Valve Anatomy

Favouring Repair

A2-P2 lesion Single jet

No/poor annular/leaflet calcification

Large annulus

No MV baseline gradient Suitable coaptation depth/length

Adequate MV area (>4 cm²)

Favouring Replacement

Commissural/complex lesion Multiple jet Severe annular/leaflet calcification Device-compatible annulus Baseline gradient >4 mmHg Large coaptation gap Small MV area (<3.5 cm²)

Patient

No previous surgery

KU LEUVEN

Contraindication to lifelong anticoagulation

Previous MV bioprosthesis

Low bleeding risk

Russo et al. Circ Cardiovasc Interv. 2021;14:e010628. DOI: 10.1161

KU LEUVEN

Russo et al. Circ Cardiovasc Interv. 2021;14:e010628. DOI: 10.1161

Summary

NCT03242642, NCT03433274

