

Polymorphisms of genes encoding selenoproteins influence the growth of abdominal aortic aneurysm (AAA) – a study in Polish population

<u>Ewa Strauss</u>^{1, 2, 4,} Łukasz Kruszyna, ²; Jolanta Tomczak, ²; Marta Stelcer ³; Zbigniew Krasiński, ²; Grzegorz Oszkinis ^{3,4}

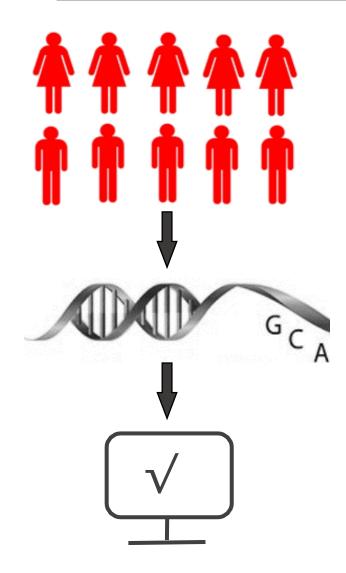
1 Institute of Human Genetics, Polish Academy of Sciences,

2 Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences,

3 Department of General and Vascular Surgery, Poznan University of Medical Sciences,

4 Department of Vascular and General Surgery, University Hospital, Opole University, Medical College, Opole, Poland

AIM


This study examines the associations of functional SNPs in 11 candidate genes for cardiovascular disease (CVD), including those involved in determining

- blood pressure,
- lipid profile,
- homocysteine levels,
- response to hypoxia and oxidative stress

with the growth rate of AAA.

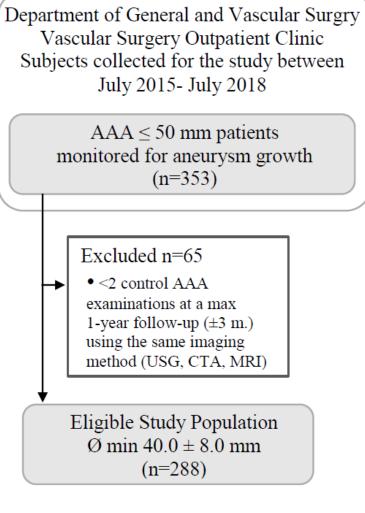
METHODS

Inclusion criteria:

- AAA ≥30 mm
- ≥2 control examination of aneurysm diameter during 1 year
- both sexes

TaqMan-genotyping of 11 SNPs in genes: AGTR1, ApoE, GPX4, HIF1A, MTHFR, PON1, SELENOS, SEPP1, SOD2, TXNRD1, TXNRD2,

Statistical analysis:


- the development of AAA progression models using GLM methods
- growth rates estimated for growth within the specified AAA size ranges, in 10 mm increments (± 2 mm) covering AAA growth from 30 - 70 mm
- analysis of association

METHODS

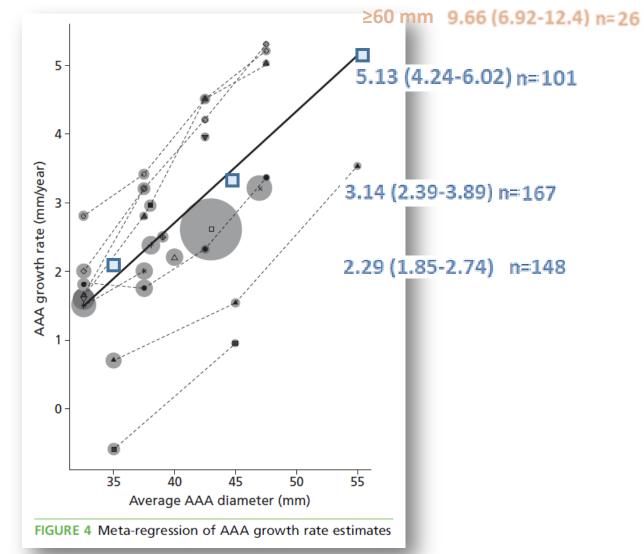
Flow chart describing selection of study patients

Enrollment

Follow-up

The characteristics of study group

Parameter	AAA N=288
Age [years]	68.3±7.1
Men	82.3%
Cigarette smoking, current	34.6%
Arterial hypertension	83.6%
Diabetes	28.7%
Hyperlipidemia	85.0%
AAA ≥50 mm	42.8%
AAA growth rate [mm/y]	3.7±4.7
No. of ultrasound scans	6.1 ± 2.9
Follow-up, years	3.9 ±2.2
Elective AAA repair	34.0%



RESULTS

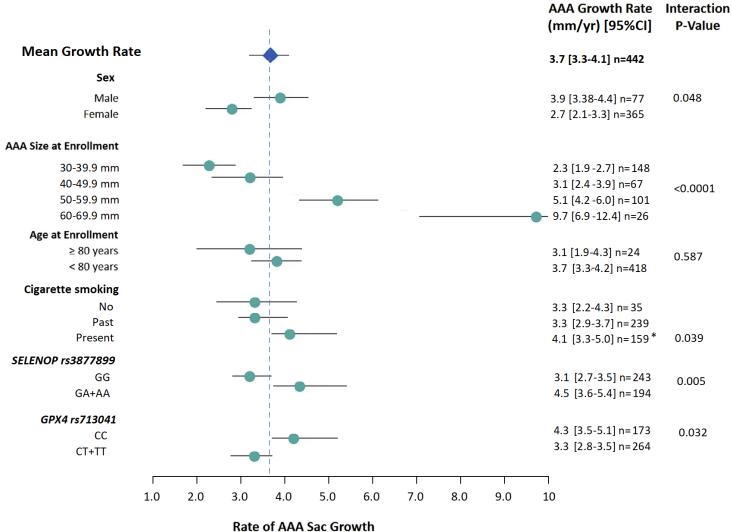
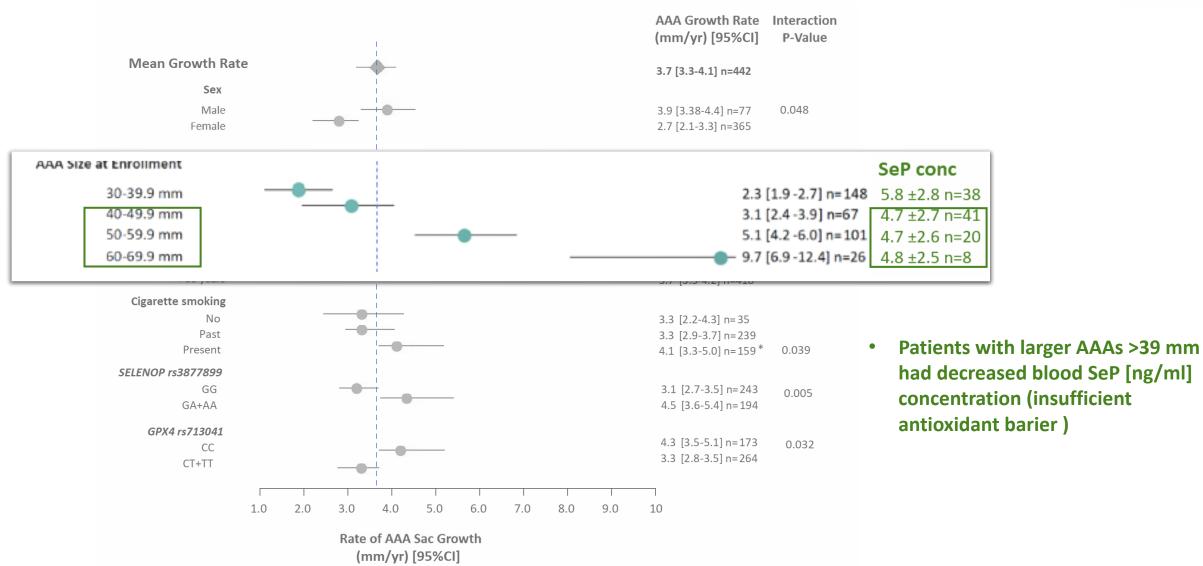
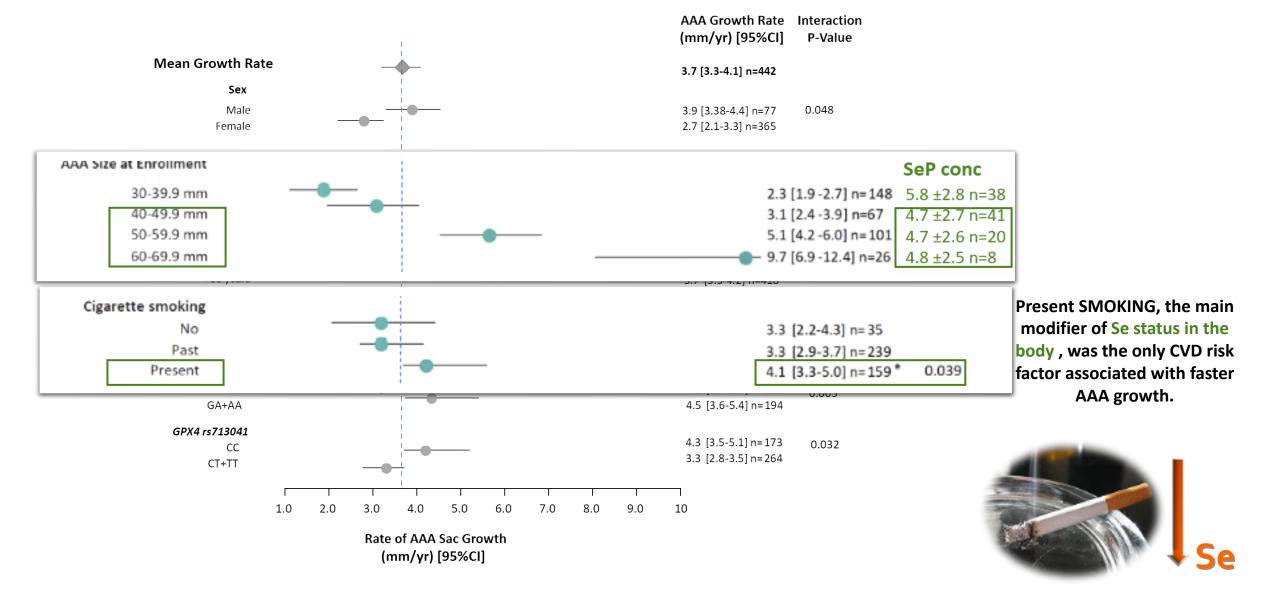


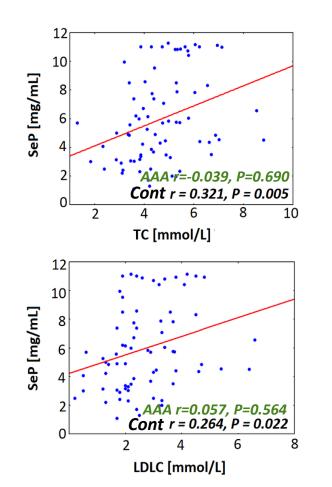
FIGURE AAA growth rates estimated for specified size ranges (n=442 individual observations)

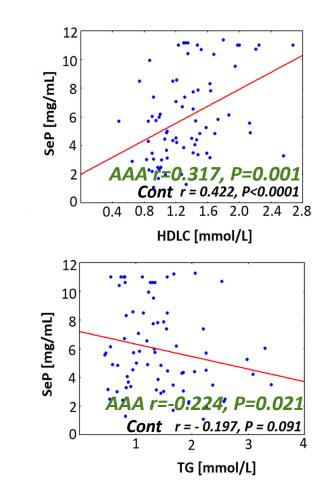

FACTORS ASSOCIATED WITH ANNUAL AAA GROWTH RATE

Rate of AAA Sac Growt (mm/yr) [95%CI]

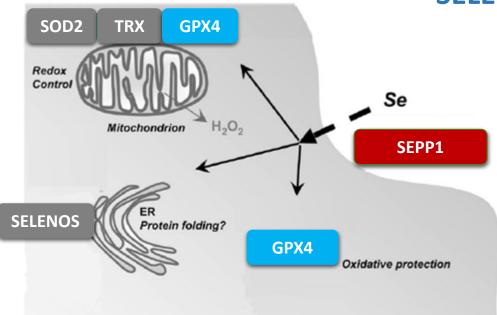


FACTORS ASSOCIATED WITH ANNUAL AAA GROWTH RATE

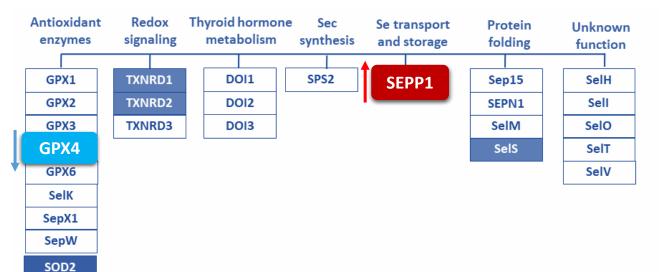



FACTORS ASSOCIATED WITH ANNUAL AAA GROWTH RATE

CORRELATION OF SELENOPROTEIN P (SeP) LEVELS WITH LIPID PROFILES IN THE POPULATION OF 105 PATIENTS WITH AAA AND 75 CONTROL SUBJECTS



- positvely corelated with HDLC
- negatively corelated with TG



Intracellular oxidative stress

SELENOPROTEINS

- 25 proteins that include selenium
- act against oxidative stress

SEPP1: Ex5 –rarer allele favors the production of a low Se isoform of protein) GPX4- 3'-UTR -alters the protein binding to the 3'-UTR and reporter gene activity, SNPs associated with AAA growth influenced the effects of Se supplementation in clinical trials

SeP AND SELENOPROTEIN SNPS vs CVD

Protein/Gene	Parameter/SNP	Effect	Protein/Gene	Parameter/SNP	Effect
SeP	Levels increased	 presence of diabetes glucose intolerance thickening of the intima-media complex in the carotid artery 	GPX4	rs713041	 concentrations of inflammatory biomarkers cerebral stroke endothelial dysfunction
	Levels	 gestational diabetes mellitus 		rs4807542	concentrations of inflammatory biomarkers
	decreased		SELENOS	rs4965814	ischemic stroke
	Expression increased	 in macrophages with anti-atherosclerotic function (implies a protective role of SeP in CVD) act as an antiangiogenic factor, retarding perfusion recovery in response to ischemia in diabetic peripheral and coronary atherosclerosis 		rs28628459	 self-reported history of prior CVD carotid atherosclerosis self-reported history of prior CVD
SEPP1	rs7579A	 SNPs affect the bioavailability of Se abdominal aortic aneurysm 		rs7178239	carotid atherosclerosisischemic stroke
	ro2077000	-		rs8025174	 carotid atherosclerosis
	 sNPs affect the bioavailability of Se 				 coronary artery disease
		abdominal aortic aneurysm		rs9806366	 self-reported history of prior CVD
				rs28665122	carotid atherosclerosis
				rs12917258	 coronary atherosclerosis

- Primarily studied in malignant diseases,
- Growing evidence on their role in CVD

SELENIUM & AAAs

asa 2011; 40: 381–389 2011 by Hans Huber Publishers, Hogrefe AG, Bern			Original co	mmunicatio	n	
th ab	d the content of sele odominal aortic aneu H. Borawska ¹ , M. Gacko ² and A. Guzov ersity of Białystok, Department of Broma ersity of Białystok, Department of Vascul	urysm ^{wski²} itology, Biały	* rstok, Poland			
No	Selenium	n	Control group mean ± SD (min. – max.)	n	Patients with AAA mean ± SD (min. – max.)	p value
	Serum (µg/L)	22	75.87 ± 22.4	49	60.37 ± 21.2 (17.65 - 113.34)	0.0075
1	oerum (µg/E)		(46.57 – 149.42)		(1)100 110001)	
1	Aortic wall (ng/g)	17	(46.57 - 149.42) 55.44 ± 34.4 (14.07 - 124.70)	40	52.31 ± 47.1 (10.05 – 219.13)	0.839

3. Correlations between serum TRX with AAA size and expansion rate

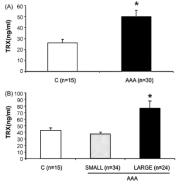
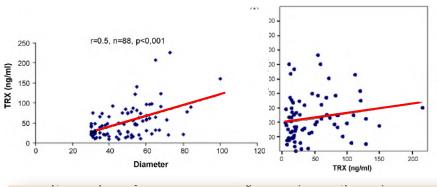



Fig. 2. TRX levels in AAA. (A) TRX levels are significantly increased in serum of patients with AAA (n = 30) vs. controls (n = 15) ("p <0.05). (B) TRX levels are significantly increased in serum of patients with large AAA (n = 24) in relation to small AAA (n = 34) and controls (n = 15) (*p < 0.05).

Increased levels of thioredoxin in patients with abdominal aortic aneurysms (AAAs). A potential link of oxidative stress with AAA evolution

R. Martinez-Pinna⁴, J.S. Lindholt^b, L.M. Blanco-Colio⁴, T. Dejouvencel^c, J. Madrigal-Matute⁴, P. Ramos-Mozo⁴, M. Vega de Ceniga⁴, J.B. Michol⁶, L. Erido⁴, O. Moilhac⁶, L. Martin Vontura

Conclusions: TRX release is increased in the luminal part of AAA and TRX serum levels are increased in AAA patients compared with healthy subjects. TRX levels correlates with AAA size and expansion, suggesting its potential role as a biomarker of AAA evolution.

Redox Report Communications

2. Decrease of plasma levels of Se In Free Radical Research as AAA size increased

Table 2 Mean plasma levels of oxidative stress biomarkers in control subjects and AAA patients

Variable	Control group (n = 18)	AAA ≤50 mm (<i>n</i> = 15)	AAA >50 mm (<i>n</i> = 12)	P -value*
Vitamin C (µg/ml)	10.9 ± 3.85	9.15 ± 2.73	7.35 ± 3.16	0.011
a-Tocopherol (µg/ml)	14.5 ± 3.34	12.4 ± 3.14	11.6 ± 2.91	0.016
γ-Tocopherol (µg/ml)	0.81 ± 0.38	0.92 ± 0.49	0.66 ± 0.29	0.50
Cholesterol (g/l)	2.04 ± 0.35	1.79 ± 0.54	1.62 ± 0.46	0.020
a-Tocopherol /chole (mg/g)	7.16 ± 1.44	7.10 ± 1.31	7.38 ± 1.64	0.71
β-Carotene (mg/l)	0.29 ± 0.17	0.20 ± 0.18	0.11 ± 0.054	0.0096
Thiol proteins (µM)	311 ± 38	337 ± 45.7	312 ± 41.0	0.48
Ubiquinone (mg/l)	0.84 ± 0.32	0.70 ± 0.23	0.57 ± 0.21	0.014
Copper (mg/l)	0.88 ± 0.12	0.90 ± 0.26	0.90 ± 0.32	0.79
Zinc (mg/l)	0.79 ± 0.14	0.73 ± 0.10	0.63 ± 0.13	0.0035
Copper/zinc ratio	1.14 ± 0.21	1.24 ± 0.38	1.43 ± 0.42	0.046
Selenium (µg/I)	92.7 ± 16.4	83.8 ± 18.3	70.4 ± 21.0	0.0038
Lipid peroxides (µM)*	520 ± 228	574 ± 360	563 ± 307	0.82
Oxidized LDL (ng/ml)*	756 ± 964	205 ± 244	264 ± 220	0.062
Antibodies against oxidized LDL	263 ± 282	255 ± 308	148 ± 87.5	0.32
Isoprostanes (ng/ml)	1.01 ± 0.66	1.19 ± 0.64	1.68 ± 0.89	0.052
Paraoxonase (ng/ml)*	105 ± 61.1	127 ± 89.0	136 ± 72.2	0.26
Total glutathione (µM)*	852 ± 203	960 ± 148	922 ± 209	0.20
Oxidized glutathione (µM)*	1.01 ± 0.67	4.58 ± 11.0	4.93 ± 13.3	0.33
Glutathione peroxidase (UI/g Hb)	51.5 ± 9.97	51.5 ± 11.5	51.0 ± 10.6	0.91
Myeloperoxidase (ng/ml)*	22.0 ± 24.4	53.4 ± 76.6	48.8 ± 95.9	0.28

Conclusions

- The observed associations confirm the role of selenoproteins and oxidative stress in the progression of AAA.
- The role of SNPs *SELENOP* rs3877899 and *GPX4* rs713041 in AAA progression is a novel observation